Dynamics of the body temperature and locomotor activity of the northern mole vole (Ellobius talpinus, Cricetidae, Rodentia) in the warm season of the year

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To study seasonal thermoregulatory adaptations in small mammals of temperate latitudes, implantable loggers were used that continuously record the body temperature and activity of animals. The data obtained with loggers were recorded in five individuals of the Northern mole vole (Ellobius talpinus) remaining in their natural habitat throughout the warm season of the year (May–October). The average and minimum body temperatures in the summer months were significantly higher than those in spring and autumn. The locomotor activity showed similar dynamics. The acrophase of the daily rhythms of body temperature in all months occurred in the morning, the activity in the evening. The circadian rhythms of both indexes had the maximum power in summer and faded in autumn and spring. A comparison of the data obtained with the results of similar observations performed in the cold season of the year (October–April) made it possible to trace a full seasonal cycle of body temperature dynamics and locomotor activity and to confirm the absence of deep hypothermia bouts in the Northern mole vole.

Full Text

Restricted Access

About the authors

D. V. Petrovskii

Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences; Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: eug-nov5@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk

I. A. Vasiliev

Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Agrarian University

Email: eug-nov5@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk

Е. А. Novikov

Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences; Novosibirsk State Agrarian University

Email: eug-nov5@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Евдокимов Н.Г., 2001. Популяционная экология обыкновенной слепушонки. Екатеринбург: “Екатеринбург”. 144 с.
  2. Новиков Е.А., 2007. Экономия ресурсов как основа адаптаций обыкновенной слепушонки (Ellobius talpinus: RODENTIA) к подземному образу жизни // Журнал общей биологии. Т. 68. № 4. С. 268– 277.
  3. Новиков Е.А., Петровский Д.В., Мошкин М.П., 2007. Особенности популяционной структуры обыкновенной слепушонки на северо-восточной периферии видового ареала // Сибирский экологический журнал. Т. 4. С. 669–676.
  4. Новиков Е.А., Петровский Д.В., Мошкин М.П., 2008. Осенний стресс и вероятность повторного отлова весной у обыкновенной слепушонки (Ellobius talpinus, Rodentia, Cricetidae) // Зоологический журнал. Т. 3. С. 375–384.
  5. Новиков Е.А., Бурда Г., 2013. Эколого-эволюционные предпосылки аномальной продолжительности жизни у подземных грызунов // Успехи современной биологии. Т. 133. № 1. С. 98–108.
  6. Новиков Е.А., Демченко Е.Е., Задубровская И.В., Задубровский П.А., Мацкало Л.Л., Назарова Г.Г., Новикова Е.В., Потапов М.А., Потапова О.Ф., Проскурняк Л.П., 2022. От чего зависит продолжительность жизни вида? // Журнал общей биологии. Т. 83. № 6. С. 403–418.
  7. Новиков Е.А., Васильев И.А., Задубровский П.А., Задубровская И.В., Мацкало Л.Л., Новикова Е.В., Петровский Д.В., 2024. Изменчивость биоэнергетических показателей у мышевидных грызунов различной экологической специализации // Журнал общей биологии. Т. 85. № 2. С. 150–162.
  8. Петровский Д.В., Новиков Е.А., Мошкин М.П., 2008. Динамика температуры тела обыкновенной слепушонки (Ellobius talpinus, Rodentia, Cricetidae) в зимний период // Зоологический журнал. Т. 87. № 12. С. 1504–1508.
  9. Формозов А.Н., 1990. Снежный покров как фактор среды, его значение в жизни млекопитающих и птиц СССР. М.: МГУ. 288 с.
  10. Bakloushinskaya I., Lyapunova E.A., Saidov A.S., Romanenko S.A., O’Brien P.C., Serdyukova N.A., Ferguson-Smith M.A., Matveevsky S., Bogdanov A.S., 2019. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobius alaicus Vorontsov et al., 1969 (Mammalia, Rodentia) // Comparative Cytogenetics. V. 13. № 2. P. 147.
  11. Buffenstein R., 2008. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species // Journal of Comparative Physiology B.V. 178. P. 439–445.
  12. Faulkes C.G., Eykyn T.R., Miljkovic J.L., Gilbert J.D., Charles R.L., Prag H.A., Patel N., Hart D.W., Murphy M.P., Bennett N.C., Aksentijevic D., 2024. Naked mole-rats have distinctive cardiometabolic and genetic adaptations to their underground low-oxygen lifestyles // Nature Communications. V. 15. № 1. P. 2204.
  13. Finn K.T., Brede O., Bennett N.C., Zöttl M., 2024. Ultradian rhythms of activity in a wild subterranean rodent // Biology Letters. V. 20. № 10. P. 20240401.
  14. Gorbunova V., Seluanov A., Zhang Z., Gladyshev V.N., Vijg J., 2014. Comparative genetics of longevity and cancer: insights from long-lived rodents // Nature Reviews Genetics. V. 15. № 8. P. 531–540.
  15. Grahn D.A., Miller J.D., Hjung V.S., Heller H.C., 1994. Persistence of circadian rhythmicity in hibernating ground squirrels // Animal Journal Physiology. V. 266. R1251–R1258.
  16. Hellgren E.C., 1998. Physiology of hibernation in bears. Ursus. P. 467–477.
  17. Lacey E.A., Cutrera A.P., 2007. Behavior, demography, and immunogenetic variation: new insights from subterranean rodents // Subterranean rodents: news from underground. S. Begall, H. Burda, H. Lacey eds. Berlin, Heidelberg: Springer Berlin Heidelberg. P. 341–355.
  18. Moshkin M.P., Novikov E.A., Petrovski D.V., 2001. Seasonal changes of thermoregulation in the mole vole Ellobius talpinus // Physiological and Biochemical Zoology. V. 74. № 6. P. 869–875.
  19. McNab B.K., 1979. The influence of body size on the energetics and distribution of fossorial and burrowing mammals // Ecology. V. 60. № 5. P. 1010–1021.
  20. Němec P., Cvekovǎ P., Burda H., Benada O., 2007. Visual systems and the Role of Vision in Subterranean Rodents: diversity of retinal properties and visual system designs // Subterranean rodents: news from underground. S. Begall, H. Burda, H. Lacey eds. Berlin, Heidelberg: Springer Berlin Heidelberg. P. 129–160.
  21. Nevo E., 1979. Adaptive convergence and divergence of subterranean mammals // Ann. Rev. Ecol. Syst. V. 10. P. 269–308.
  22. Petrovski D.V., Novikov E.A., Burns J.T., Moshkin M.P., 2010. Wintertime loss of ultradian and circadian rhythms of body temperature in the subterranean euthermic mole vole, Ellobius talpinus // Chronobiology International. V. 27. № 4. P. 879–887.
  23. Petrovskii D., Zavjalov E., 2023. Development and validation of an implantable sensor for measuring activity and body temperature for long-term studies in small wild and laboratory animals // Biological Rhythm Research. V. 54. № 9. P. 523–534.
  24. Petrovskii D., Novikov E., 2024. Body temperature and locomotor activity of social subterranean mole voles (Ellobius talpinus) in winter // Journal of Thermal Biology. V. 121. P. 103866.
  25. Refinetti R., 2015. Circadian Rhythm Laboratory. [Электронный ресурс]. Режим доступа: https://www.circadian.org/softwar.html. Дата обновления: 25.11.2024.
  26. Šumbera R., 2019. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) – a review // Journal of Thermal Biology. V. 79. P. 166–189.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical patterns of body temperature and activity dynamics in different months of the year. Three-day fragments of readings from a logger (No. 5010) implanted in an adult female (No. 24120) for the periods of May 20–22, July 20–22, and October 11–13, 2024 are used as an example.

Download (591KB)
3. Fig. 2. Dynamics of body temperature of common mole voles in the warm season.

Download (130KB)
4. Fig. 3. Average values ​​(mesor), amplitude and acrophase of daily body temperature fluctuations in northern mole voles in the warm season. Here and in Fig. 5, the values ​​of the same indicator, statistically significantly (HSD – Tukey criterion; p <0.05) different in different months, are marked with different letters.

Download (183KB)
5. Fig. 4. Power of rhythms (F-criterion values) of body temperature fluctuations in common mole voles with a periodicity from 0.1 to 34 hours.

Download (169KB)
6. Fig. 5. Average values ​​(mesor), amplitude and acrophase of daily fluctuations in the motor activity of common mole voles in the warm season.

Download (154KB)
7. Fig. 6. Power of rhythms (F-criterion values) of fluctuations in motor activity of common mole voles with a periodicity from 0.1 to 34 hours.

Download (168KB)

Copyright (c) 2025 Russian Academy of Sciences