Application of eddy current method of control for indication of fatigue changes in austenitic steels with martensite formation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results of cyclic tests of 08X18N10T structural steel are presented. The tests were carried out using the accelerated Location method. The experimental data obtained showed that cyclic deformation of austenitic steel leads to the formation of deformation martensite, as indicated by the results of X-ray phase examination of the sample. The study of the microstructure of steel also indicates structural and phase transformations occurring in steel. The eddy current signal was measured on the test sample before and after the tests. Changes in the phase and amplitude of the eddy current signal occurring after the tests indicate the possibility of using this method to determine the formation of deformation martensite in austenitic steel.

Texto integral

Acesso é fechado

Sobre autores

K. Kuskov

Industrial University of Tyumen

Autor responsável pela correspondência
Email: kuskovkv@tyuiu.ru
Rússia, 625000, Tyumen, Volodarsky Street, 38

R. Sokolov

Industrial University of Tyumen

Email: falcon.rs@mail.ru
Rússia, 625000, Tyumen, Volodarsky Street, 38

K. Muratov

Industrial University of Tyumen

Email: muratovkr@tyuiu.ru
Rússia, 625000, Tyumen, Volodarsky Street, 38

Bibliografia

  1. Makarov A.V., Gorkunov E.S., Savray R.A., Kolobylin Yu.M., Kogan L.Kh., Pozdeeva N.A., Malygina I.Yu. Magnitnyj i vihretokovyj kontrol’ zakalennoj konstrukcionnoj stali, podvergnutoj kombinirovannym deformacionno-termicheskim obrabotkam (Magnetic and eddy current control of hardened structural steel subjected to combined deformation and heat treatments) // Defectoskopiya. 2012. No. 12. P. 3—18.
  2. Bakunov A.S., Muzhickij V.F., Shubochkin S.E. Sovremennoe reshenie zadach vihretokovoj strukturoskopii (Modern solution of eddy current structuroscopy problems) // Defectoskopiya. 2004. No. 5. P. 79—84.
  3. Savray R.A., Kogan L.H., Makarov A.V., Soboleva N.N. Osobennosti vihretokovogo kontrolya ustalostnoj degradacii naplavlennogo lazerom kobal’thromonikelevogo pokrytiya pri kontaktnom nagruzhenii (Features of eddy current control of fatigue degradation of laser clad cobalt-chromium-nickel coating under contact loading) // Letters on Materials. 2020. V. 10. No. 3 (39). P. 315—321. doi: 10.22226/2410-3535-2020-3-315-321
  4. Savrai R.A., Kogan L.Kh. Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact-Fatigue Loading // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 5. P. 393—400.
  5. Savrai R.A. Vliyanie uprochnyayushchej frikcionnoj obrabotki na osobennosti vihretokovogo kontrolya ustalostnoj degradacii metastabil’noj austenitnoj stali pri gigaciklovom kontaktno-ustalostnom nagruzhenii (Influence of strengthening friction treatment on features of eddy current control of fatigue degradation of metastable austenitic steel under gigacyclic contact-fatigue loading) // Defectoskopiya. 2022. No. 8. P. 52—61. doi: 10.31857/S013030822208005X
  6. Silva V.M.A., Camerini C.G., Pardal J.M., de Blás J.C.G., Pereira G.R. Eddy current characterization of cold-worked AISI 321 stainless steel // Journal of Materials Research and Technology. 2018. V. 7. Is. 3. P. 395—401.
  7. Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI 321 stainless steel // Journal of Materials Engineering and Performance. 2012. V. 21. Is. 8. P. 1772—1776.
  8. Khan S.H., Ali F., Nusair Khan A., Iqbal M.A. Eddy current detection of changes in stainless steel after cold reduction // Computational Materials Science. 2008. V. 43. Is. 4. P. 623—628.
  9. De Backer F., Schoss V., Maussner G. Investigations on the evaluation of the residual fatigue lifetime in austenitic stainless steels // Nuclear Engineering and Design. 2001. V. 206. Is. 2—3. P. 201—219.
  10. Mishakin V., Gonchar A., Kurashkin K., Kachanov M. Prediction of fatigue life of metastable austenitic steel by a combination of acoustic and eddy current data // International Journal of Fatigue. 2020. V. 141. 105846. P. 1—6.
  11. Corte J.S., Rebello J.M.A., Areiza M.C.L., Tavares S.S.M., Araujo M.D. Failure analysis of AISI 321 tubes of heat exchanger // Engineering Failure Analysis. 2015. V. 56. P. 170—176.
  12. Wilam M., Čermáková I. Integrity of VVER steam generator tubes // Theoretical and Applied Fracture Mechanics. 1995. V. 23. Is. 2. P. 151—153.
  13. Kolmykov V.I., Romanenko D.N., Nefediev S.P., Dema R.R., Kharchenko M.V., Romanenko E.F., Kononov V.N., Zambrzhitskaya E.S., Nikitenko O.A. Izuchenie ustalostnoj prochnosti ferromagnitnyh materialov nerazrushayushchim ekspress-metodom (Study of fatigue strength of ferromagnetic materials by non-destructive express method) // Zavodskaya laboratoria. Diagnostics of materials. 2017. V. 83. No. 11. P. 47—51. doi: 10.26896/1028-6861-2017-83-11-47-51
  14. STP 26.260.484-2004. Termicheskaya obrabotka korrozionnostojkih stalej i splavov na zhelezonikelevoj osnove v himicheskom mashinostroenii (Heat treatment of corrosion-resistant steels and iron-nickel-based alloys in chemical engineering). Text: electronic. Approved 13.05.2004. P. 33.
  15. Kuskov K.V., Syzrantseva K.V. Sravnenie ustalostnyh harakteristik obrazcov razlichnoj geometrii iz stali 09G2S (Comparison of fatigue characteristics of specimens of different geometry made of 09G2S steel) // Bulletin of Perm National Research Polytechnic University. Mechanical Engineering, Material Science. 2024. V. 26. No. 2. P. 24—30. doi: 10.15593/2224-9877/2024.2.03
  16. RD 50-686-89. Metodicheskie ukazaniya. Nadyozhnost’ v tekhnike. Metody uskorennyh ispytanij na ustalost’ dlya ocenki predelov vynoslivosti materialov, elementov mashin i konstrukcij (Methodological guidelines. Reliability in technology. Methods of accelerated fatigue tests for assessment of endurance limits of materials, machine elements and structures). Date of introduction: 01.01.90. Moscow: Standards Publishing House, 1990. P. 27.
  17. Lyalyakin V.P. Uskorennyj metod Lokati dlya ispytaniya detalej mashin na soprotivlenie ustalosti (Accelerated method of Locati for fatigue resistance testing of machine parts) // Vestnik Mashinostroeniya. 2021. No. 6. P. 28—29. doi: 10.36652/0042-4633-2021-6-28-30
  18. Kuskov K.V. The influence evaluation of the roughness direction on fatigue resistance // Procedia Structural Integrity. 2024. V. 65. P. 133–138.
  19. Korh M.K., Rigmant M.B., Korh Y.V., Nichipuruk A.P. Metody i pribory kontrolya fazovogo sostava, elektricheskih i magnitnyh svojstv hromonikelevyh stalej (Methods and devices for control of phase composition, electrical and magnetic properties of chromium-nickel steels) // Bulletin of M.T. Kalashnikov IzhGTU. 2018. V. 21. No. 4. P. 4—12. doi: 10.22213/2413-1172-2018-4-4-12
  20. Goruleva L.S., Zadvorkin S.S.M., Mushnikov A.N. Vliyanie plasticheskoj deformacii na fazovyj sostav i elektromagnitnye harakteristiki austenitnoj stali marki 321N (08H18N10T) (Effect of Plastic Deformation on the Phase Composition and Electromagnetic Characteristics of 321N (08X18N10T) Austenitic Steel) // Diagnostics, Resource and Mechanics of Materials and Structures. 2022. No. 6. P. 95—106. doi: 10.17804/2410-9908.2022.6.095-106
  21. Klyuev V.V. Nondestructive testing in 2 books. Т. 1: Tightness control. Т. 2: Eddy current control. Reference book in 8 volumes. Moscow: Mashinostroenie, 2003. P. 688.
  22. Dyakin V.V., Sandovsky V.A. Theory and calculation of clamp-on eddy current transducers (Theory and calculation of overhead eddy current transducers). Moscow: Nauka, 1981. P. 136.
  23. Talonen J., Aspegren P., Hänninen H. Comparison of different methods for measuring strain induced α-martensite content in austenitic steels // Materials Science and Technology. 2004. V. 20. URL: doi: 10.1179/026708304X4367
  24. Rigmant M.B., Korh M.K., Davydov D.I., Shishkin D.A., Korkh Yu.V., Nichipuruk A.P., Kazantseva N.V. Metody vyyavleniya martensita deformacii v austenitno-ferritnyh stalyah (Methods of strain martensite detection in austenitic-ferritic steels) // Defectoskopiya. 2015. No. 11. P. 28—42.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Eddy current flaw detector Vector (1) with a PVR-1 clamp-on transducer (2) and a holder for fixing the position of the sensor on the sample (3).

Baixar (130KB)
3. Fig. 2. Microstructure of 08Kh18N10T steel at 200x magnification: as delivered (a); after austenitization (b).

Baixar (427KB)
4. Fig. 3. Images of the test sample with the areas where measurements were taken indicated.

Baixar (97KB)
5. Fig. 4. Change in eddy current signal before and after cyclic testing: change in the real component of the introduced voltage (a); change in the imaginary component of the introduced voltage (b); change in the amplitude of the introduced voltage (c); change in the phase of the introduced voltage (d).

Baixar (323KB)
6. Fig. 5. Microstructure of the sample after fatigue testing in the fracture region (×200).

Baixar (229KB)
7. Fig. 6. Diffractograms of 08Kh18N10T steel: full diffractogram (a); enlarged diffractogram near the angle of 44° (b); enlarged diffractogram near the angle of 51° (c); enlarged diffractogram near the angle of 75° (d).

Baixar (326KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025