Determination of cavity shape and size in homogeneously magnetized magnets within the framework of a two-dimensional model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For extended uniformly magnetized bodies, a practical implementation of a numerical algorithm for solving an integral-differential equation on a function that defines the localization, shape, and size of a cavity in such a magnet based on the measured resulting field outside of it has been investigated. A program in the FORTRAN language that implements the above algorithm has been compiled. As a test and illustrative example of the studied algorithm for a uniformly magnetized cylindrical magnet, the shape, dimensions, and position of a non-coaxial cylindrical cavity in the magnet have been reconstructed.

Full Text

Restricted Access

About the authors

V. V. Dyakin

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: kudryashova_ov@imp.uran.ru
Russian Federation, 620108, Yekaterinburg, S. Kovalevskoy St., 18

O. V. Kudryashova

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kudryashova_ov@imp.uran.ru
Russian Federation, 620108, Yekaterinburg, S. Kovalevskoy St., 18

V. Y. Raevskii

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: raevskii@imp.uran.ru
Russian Federation, 620108, Yekaterinburg, S. Kovalevskoy St., 18

References

  1. Pechenkov A N., Shcherbinin V.E. Nekotorye pryamye i obratnye zadachi tekhnicheskoj magnitostatiki. Ekaterinburg: Izd-vo UrO RAN, 2004. 177 p.
  2. Pechenkov A.N., Shcherbinin V.E. O reshenii obratnoj zadachi magnitostaticheskoj tomografii // Defectoskopiya. 2009. No. 3. P. 37—55.
  3. Pechenkov A.N., Shcherbinin V.E. K voprosu o needinstvennosti resheniya obratnoj zadachi magnitostaticheskoj defektoskopii // Kontrol’. Diagnostika. 2006. No. 9. P. 59—60.
  4. Pechenkov A.N. O vliyanii formy tela na edinstvennost’ resheniya obratnoj zadachi magnitostaticheskoj defektoskopii // Defectoskopiya. 2006. No. 10. P. 24—26.
  5. Dyakin V.V. Pryamaya i obratnaya zadacha magnitostatiki // Defectoskopiya. 1996. No. 3. P. 3—6.
  6. Dyakin V.V., Kudryashova O.V., Raevskij V.Ya. K voprosu o korrektnosti pryamoj i obratnoj zadachi magnitostatiki. Chast’ 2 // Defectoskopiya. 2018. No. 10. P. 15—24.
  7. Reutov Yu.Ya., Gobov Yu.L., Loskutov V.E. O vozmozhnostyah ispol’zovaniya programmy ELCUT v raschetah po defektoskopii // Defectoskopiya. 2002. No. 6. P. 34—40.
  8. Zagidulin R.V, Dyakin V.V., Dudarev M.S., Shcherbinin V.E. K opredeleniyu geometricheskih razmerov poverhnostnogo defekta / Fizicheskie metody i pribory NK. Tezisy dokladov X Ural’skoj nauchnoj tekhnicheskoj konferencii. Izhevsk, 1989. P. 83.
  9. Novoslugina A.P., Smorodinskij Ya.G. Raschetnyj sposob ocenki parametrov defektov v stalyah // Defectoskopiya. 2017. No. 11. P. 13—19.
  10. Dyakin V.V., Raevskij V.Ya., Kudryashova O.V. Pole konechnogo defekta v plastine // Defectoskopiya. 2009. No. 3. P. 67—79.
  11. Krotov L.N. Rekonstrukciya granicy razdela sred po prostranstvennomu raspredeleniyu magnitnogo polya rasseyaniya. 1. Issledovanie svojstv resheniya vspomogatel’noj pryamoj zadachi // Defectoskopiya. 2004. No. 2. P. 76—82.
  12. Krotov L.N. Rekonstrukciya granicy razdela sred po prostranstvennomu raspredeleniyu magnitnogo polya rasseyaniya. 2. Postanovka i metod resheniya obratnoj geometricheskoj zadachi magnitostatiki // Defectoskopiya. 2004. No. 6. P. 76—82.
  13. Slesarev D.A., Barat V.A., Chobanu P.M. Snizhenie pogreshnosti statisticheskogo metoda ocenki parametrov defektov v magnitnoj defektoskopii // Defectoskopiya. 2012. No. 1. P. 69—74.
  14. Gobov Yu.L., Nikitin A.V., Popov S.E. Reshenie obratnoj geometricheskoj zadachi magnitostatiki dlya defektov korrozii // Defectoskopiya. 2018. No. 10. P. 51—57.
  15. Dyakin V.V., Kudryashova O.V., Raevskij V.Ya. Obratnaya zadacha magnitostatiki v polyah nasyshcheniya // Defectoskopiya. 2019. No. 10. P. 35—44.
  16. Dyakin V.V., Kudryashova O.V., Raevskij V.Ya. Obratnaya zadacha magnitostatiki dlya odnorodno namagnichennyh tel v ramkah dvumernoj modeli // Defectoskopiya. 2025. No. 2. P. 39—52.
  17. Samohin A.B. Ob”emnye singulyarnye integral’nye uravneniya elektrodinamiki. M.: Tekhnosfera, 2021. 217 p.
  18. Hizhnyak N.A. Integral’nye uravneniya makroskopicheskoj elektrodinamiki. Kiev: Naukova dumka, 1986. 279 s.
  19. Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 1 // SIAM J. Appl. Math. 1980. V. 39. No. 1. P. 14—20.
  20. Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 2 // SIAM J. Numer. Anal. 1981. V. 18. No. 4. P. 644—653.
  21. Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 3 // SIAM J. Math. Analys. 1981. V. 12. No. 4. P. 536—540.
  22. Dyakin V.V. Matematicheskie osnovy klassicheskoj magnitostatiki. Ekaterinburg: RIO UrO RAN, 2016. 403 p.
  23. Raevskij V.Ya. O svojstvah kvaziermitovyh operatorov i ih primenenii k issledovaniyu operatorov teorii potenciala i osnovnogo uravneniya elektro- i magnitostatiki / Preprint № 24/48(01). Ekaterinburg: IFM UrO RAN, 2001.
  24. Raevskij V.Ya. Nekotorye svojstva operatorov teorii potenciala i ih primenenie k issledovaniyu osnovnogo uravneniya elektro- i magnitostatiki // Teoreticheskaya i matematicheskaya fizika. 1994. V. 3. No. 100. P. 323—331.
  25. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady. T. 1. M.: Fizmatlit, 2003. 632 p.
  26. Panteleev A.V., Letova T.A. Metody optimizacii v primerah i zadachah. M.: Vyssh. shk., 2002. 544 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Magnet in an external field, two-dimensional model.

Download (62KB)
3. Fig. 2. Section of a magnet with an internal cavity.

Download (64KB)
4. Fig. 3. Section of a cylindrical magnet with a cylindrical cavity.

Download (68KB)
5. Fig. 4. Section of an infinite cylindrical magnet.

Download (54KB)
6. Fig. 5. Approaching the cross-section of a cavity in a magnet with increasing degree of the approximating trigonometric polynomial.

Download (93KB)

Copyright (c) 2025 Russian Academy of Sciences