Kinetic features of non-thermal plasma conversion of propane-air mixture at high pressure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of modeling the conversion of a lean non-combustible propane-air mixture with initiation by a high-frequency corona discharge at a pressure of 5 bar and an initial temperature of 300 K for different equivalence ratios. The discharge creates non-thermal plasma in filament channels. Experiments on the development of such a discharge in air for different conditions were carried out. At pressures of 1 and 2 bar, the discharge has a complex morphology with branching of discharge filaments. At pressures above 3 bar, the glow region has the shape of a straight spoke. The paper presents a kinetic analysis of the conversion. The key component for propane decomposition is the O atom produced in the discharge as a result of O2 dissociation by direct electron impact and excited N2 molecules. In the afterglow, after completion of discharge, the source of the O atom is the reactions of ozone decomposition with N2 and O2. For the formation of NO, it is necessary to take into account the production of N atoms in the excited and ground states. Intermediate oxidized hydrocarbons play a major role in increasing the concentrations of C3H6, C2H4, and CO over time. The decomposition of O3 occurs to a greater extent in a cycle involving NO3. The heating of the discharge-activated zone did not exceed 600 K. The composition of the conversion products obtained as a result of modeling was compared with known experimental literature data.

Full Text

Restricted Access

About the authors

E. A. Filimonova

Joint Institute for High Temperatures, Russian Academy of Sciences

Author for correspondence.
Email: helfil@mail.ru
Russian Federation, Moscow

I. V. Selivonin

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: helfil@mail.ru
Russian Federation, Moscow

I. A. Moralev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: helfil@mail.ru
Russian Federation, Moscow

A. S. Dobrovolskaya

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: helfil@mail.ru
Russian Federation, Moscow

References

  1. Bellenoue M., Labuda S., Ruttun B., Sotton J. // Combust. Scien. Technol. 2007. V. 179. P. 477.
  2. Reitz R.D. // Combust. Flame. 2013. V. 160. P. 1. http://dx.doi.org/10.1016/j.combustflame.2012.11.002
  3. Discepoli G., Cruccolini V., Ricci F. et al. // Appl. Energy. 2020. V. 263. 114617. https://doi.org/10.1016/j.apenergy.2020.114617
  4. Hampe C., Bertsch M., Beck K.W. et al. // SAE. 2013. 2013-32-9144.
  5. Burrows J. and Mixell K. // Ignition Systems for Gasoline Engines / Eds. Günther M., Sens M. Switzerland: Inter. Publ. Springer, 2017. P. 268. https://doi.org/10.1007/978-3-319-45504-4_17
  6. Schenk A., Rixecker G., Bohne S. Third Laser Ignition Conference (LIC). US, 2015. Paper W4A.4.
  7. Xu D.A., Lacoste D.A., Laux C.O. // Plasma Chem. Plasma Proces. 2016. V. 36. P. 309. https://doi.org/10.1007/s11090-015-9680-3
  8. Ju Y., Sun W. // Progr. Energy Combust. Scien. 2015. V. 48. P. 21. http://dx.doi.org/10.1016/j.pecs.2014.12.002
  9. Filimonova E., Bocharov A. Bityurin V. // Fuel. 2018. V. 228. P. 309. https://doi.org/10.1016/j.fuel.2018.04.124
  10. Filimonova E.A., Bocharov A.N., Dobrovolskaya A.S., Bityurin V.A. // Plasma Chem. Plasma Proces. 2019. V. 39. № 3. P. 683. https://doi.org/10.1007/s11090-019-09964-x
  11. Tsolas N., Lee J.G., Yetter R.A. // Philosoph. Transact. Royal Soc. A. 2015. V. 373. 20140344. http://dx.doi.org/10.1098/rsta.2014.0344
  12. Tsolas N., Yetter R.A. // Combust. Flame. 2017. V. 176. P. 534. http://dx.doi.org/10.1016/j.combustflame.2016.10.022
  13. Tsolas N., Yetter R.A., Adamovich I.V. // Ibid. 2017. V. 176. P. 462. http://dx.doi.org/10.1016/j.combustflame.2016.10.023
  14. Filimonova E.A. // J. Phys. D: Appl. Phys. 2015. V. 48. 015201. https://doi.org/10.1088/0022-3727/48/1/015201
  15. Ban Y., Zhong Sh., Zhu J., Zhang F. // Fuel. 2023. V. 339. 127353. https://doi.org/10.1016/j.fuel.2022.127353
  16. Wang L., Yu X., Zheng M. // IEEE Transact. Plasma Scien. 2021. V. 49. No. 1. P. 326. https://doi.org/10.1109/TPS.2020.3041635
  17. Yu X., Wang L., Yu S., Wang M., Zheng M. // Plasma Sources Sci. Technol. 2022. V. 31. 055004. https://doi.org/10.1088/1361-6595/ac5f21
  18. Pipa A.V., Koskulics J., Brandenburg R., Hoder T. // Rev. Sci. Instrum. 2012. V. 83. № 11. P. 115112. https://doi.org/10.1063/1.4767637
  19. Pashin M.M., Lisov N.Yu. // Electricity. 2011. № 1. P. 21. [In Russian].
  20. Kriegseis J., Möller B., Grundmann S., Tropea C. // J. Electrostat. 2011. V. 69. № 4. P. 302. http://dx.doi.org/10.1016/j.elstat.2011.04.007
  21. Lisov N.Yu. // Electricity. 2016. № 10. P. 28. [In Russian].
  22. Orlov D.M., Corke T.C. // Proc. 44th AIAA Aerospace Sci. Meeting and Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2006. P. AIAA 2006-1206. https://doi.org/10.2514/6.2006-1206
  23. Filimonova E.A., Dobrovolskaya A.S., Bocharov A.N., Bityurin V.A., Naidis G.V. // Combust. Flame. 2020. V. 215. P. 401. https://doi.org/10.1016/j.combustflame.2020.01.029
  24. Filimonova E.A., Dobrovolskaya A.S. // High Temperature. 2023. V. 61. № 3. P. 311. https://doi.org/ 10.1134/S0018151X23030082
  25. Auzas F., Tardiveau P., Puech P., Makarov M, Agneray A. // J. Phys. D: Appl. Phys. 2010. V. 43. 495204. https://doi.org/10.1088/0022-3727/43/49/495204
  26. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. P. 722.
  27. Babaeva N.Yu., Naidis G.V. // J. Phys. D: Appl. Phys. 1996. V. 29. P. 2423.
  28. Filimonova E.A., Dobrovolskaya A.S. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1285. https://doi.org/ 10.1134/S1990793123060167
  29. Filimonova E.A., Kim Y., Hong S.H., Song Y.H. // J. Phys. D: Appl. Phys. 2002. V. 35. P. 2795.
  30. Zheleznyak M.B., Filimonova E.A. // High Temperature. 1998. V. 36. № 4. P. 533.
  31. Herron J.T. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 5. P. 1453.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the setup: 1 – gas chamber, 2 – high-voltage input, 3 – electrode, 4 – optical chamber, 5 – measuring capacitor.

Download (389KB)
3. Fig. 2. a – Oscillograms of the applied voltage and the charge transferred through the electrode system; b – graph of the energy deposition into the discharge. The data are presented for a pressure of 2 bar.

Download (778KB)
4. Fig. 3. Discharge images at different pressures and a voltage amplitude of 15 kV: a – 1 bar (Etot = 82 mJ), b – 2 bar (Etot = 34 mJ), c – 3 bar (Etot = 28 mJ), d – 4 bar (Etot = 27 mJ); Etot is the total energy deposited per radio pulse. Chamber exposure is 1 ms.

Download (861KB)
5. Fig. 4. Dependence of component concentrations on the discharge filament formation time at ϕ = 0.45; DeC3H8 – amount of consumed propane (difference between initial propane concentration and remaining after discharge treatment).

Download (913KB)
6. Fig. 5. Evolution of the activated zone after discharge shutdown at ϕ = 0.45. The “legend” indicates the curve type at different points in time. This applies to both temperature curves (red) and mole fractions of propane (black).

Download (508KB)
7. Fig. 6. Evolution of components after discharge completion in the activated zone at point r = 0.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences