The effect of bottom properties in acoustic distance measurement on the shallow water arctic shelf

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The impact of seabed characteristics on the accuracy of determining the distance between a sound source and receiver located underwater was studied within the framework of numerical experiments. Experimental data on bottom parameters and the sound speed profile in the water layer in summer and winter (hydrological) seasons in the shallow water part of the Kara Sea were used. In the latter case, the action of ice cover was taken into account. It has been found that the main error in determining the distance in the interval of 1–10 km is associated with the multimode (multiray) nature of the propagation of acoustic waves in the sound channel between the water surface and the bottom. It has been demonstrated that this error decreases to several meters in the summer and with a water-like bottom, when the sound speeds in the water layer and in the bottom are close to each other. It has been noted that horizontal refraction of acoustic waves caused by transverse inhomogeneity of the bottom also leads to errors in determining the distance, although to a lesser extent.

Full Text

Restricted Access

About the authors

D. D. Sidorov

Prokhorov General Physics Institute, Russian Academy of Sciences

Author for correspondence.
Email: sidorov@kapella.gpi.ru
Russian Federation, Moscow, 119991

V. G. Petnikov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: petniko@kapella.gpi.ru
Russian Federation, Moscow, 119991

References

  1. Инзарцев А.В., Каморный А.В., Львов О.Ю., Матвиенко Ю.В., Рылов Н.И. Применение автономного необитаемого подводного аппарата для научных исследований в Арктике // Подводные исследования и робототехника. 2007. № 2. С. 5–14.
  2. Римский-Корсаков Н.А., Пронин А.А., Казеннов А.Ю., Кикнадзе О.Е., Анисимов И.М., Лесин А.В., Муравья В.О. Результаты наблюдений ледового воздействия на объекты, затопленные в Карском море // Международный журнал прикладных и фундаментальных исследований. 2023. № 10. С. 31–37.
  3. Сорокин М.А., Петров П.С., Каплуненко Д.Д., Голов А.А., Моргунов Ю.Н. Прогноз эффективной скорости распространения акустических сигналов на основе модели циркуляции океана // Акуст. журн. 2021. Т. 67. № 5. С. 521–532.
  4. Григорьев В.А., Петников В.Г., Росляков А.Г., Терёхина Я.Е. Распространение звука в мелком море с неоднородным газонасыщенным дном // Акуст. журн. 2018. Т. 64. № 3. С. 342–358.
  5. Назаренко Ю.В., Сидоров Д.Д., Петников В.Г., Писарев C.В., Луньков А.А. О точности оценок расстояния по времени распространения звуковых сигналов на арктическом шельфе // Акуст. журн. 2024. Т. 70. № 3. С. 101–109.
  6. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. М.: Наука, 2007.
  7. Porter M. The KRAKEN normal mode program / La Spezia, Italy. SACLANT Undersea Research Centre, 1991. https://oalib-acoustics.org/website_resources/AcousticsToolbox/manual/kraken.html
  8. Кравцов Ю.А., Кузькин В.М., Петников В.Г. О различимости лучей и мод в идеальном волноводе // Акуст. журн. 1988. Т. 34. № 4. С. 674–678.
  9. Bhatt E.C., Viquez O., Schmidt H. Under-ice acoustic navigation using real-time model-aided range estimation // J. Acoust. Soc. Am. 2022. V. 151. № 4. P. 2656–2671.
  10. Луньков А.А., Григорьев В.А., Петников В.Г. Акустические характеристики морского дна и их влияние на дальнее распространение звука на арктическом шельфе // Успехи физ. наук. 2024. Т. 194. № 2. С. 184–207.
  11. Godin O.A. Underwater sound propagation over a layered seabed with weak shear rigidity // J. Acoust. Soc. Am. 2025. V. 157. № 1. P. 314–327.
  12. Katsnelson B., Petnikov V., Lynch J. Fundamentals of Shallow Water Acoustics. Springer: New York, Dordrecht, Heildelberg, London, 2012.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Vertical profiles of sound speed. (a) — Hydrological summer, (b) — hydrological winter

Download (993KB)
3. Fig. 2. Autocorrelation function of the emitted signal (solid line), envelope modulus of the same function (dashed line).

Download (309KB)
4. Fig. 3. Signals from the output of the correlation receiver (a), (c), (d) — at clon = 1800 m/s, (b), (d), (e) — at clon = 1440 m/s. Hydrological summer. The numbers in the figure indicate the distances between the sound source and receiver.

Download (1MB)
5. Fig. 4. The same as in Fig. 3, but for hydrological winter conditions.

Download (1MB)
6. Fig. 5. Mode spectra at a frequency of 2 kHz at different distances r from the sound source (hydrological summer): (a) — r = 1 km, (b) — r = 5 km, (c) — r = 10 km. The spectra are normalized to the value of the mode amplitude m = 2 at a distance r = 1 km. The velocity in the bottom is clon = 1440 m/s, ctr = 100 m/s.

Download (931KB)
7. Fig. 6. Errors in estimating the distance between a sound source and receiver at different times of the year and for different clon values (blue lines). The red lines show the linear interpolations for each dependence.

Download (1MB)
8. Fig. 7. Piecewise linear change in the sound speed of longitudinal clon and transverse ctr waves in the bottom. The triangle marks the position of the source. The cross marks the position of the receiver.

Download (928KB)
9. Fig. 8. Ray trajectories corresponding to waveguide modes m = 1, 2, 3, 10. The dotted line shows the acoustic path.

Download (1MB)

Copyright (c) 2025 The Russian Academy of Sciences