Individual differences in auditory feedback control of speech in noise

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study tested the hypothesis, that speech changes in noise (the Lombard effect) may have significant individual differences, including those due to the gender and age of the speakers. For this purpose, the characteristics of Lombard speech were studied for 12 speakers (6 men, 6 women; 25–35 and 55–59 years). The study used recordings of speech, consisting of disyllabic words with stressed vowel sounds [a], [i], [u] of Russian speech in silence and in multi-talker noise at levels of 60 and 72 dB(A). Changes in the fundamental frequency (ΔF0) and intensity (ΔI) of the voice in noise compared to silence were determined. When comparing groups of men and women, significant differences in the change of F0 in noise of 60 dB are shown. Differences in vowel characteristics between the young and middle-aged speaker groups were found for ΔF0 and ΔI in 72 dB noise. Regardless of gender and age, two types of speakers were identified, differing in the values of ΔF0 and ΔI at both noise levels. Speakers of the first type in multi-talker noise increased F0 by 23 and 57 Hz, for levels of 60 and 72 dB, respectively, and speakers of the second type — by 16 Hz and 23 Hz. The voice intensity of speakers of the first type for two levels of noise masker increased by 8 and 16 dB; the second type — at 6 and 10 dB. The obtained differences may be determined by the greater influence of voluntary control, with an increase in the noise level in speakers of the second type we have identified.

Full Text

Restricted Access

About the authors

A. M. Lunichkin

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Author for correspondence.
Email: BolverkDC@mail.ru
Russian Federation, Pr. Torez, 44, Saint-Petersburg, 194223

I. G. Andreeva

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: BolverkDC@mail.ru
Russian Federation, Pr. Torez, 44, Saint-Petersburg, 194223

L. G. Zaitseva

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: BolverkDC@mail.ru
Russian Federation, Pr. Torez, 44, Saint-Petersburg, 194223

E. A. Ogorodnikova

Pavlov Institute of Physiology RAS

Email: BolverkDC@mail.ru
Russian Federation, Makarova emb.,6, Saint-Petersburg, 199034

References

  1. Lee J., Ali H., Ziaei A., Tobey E.A., Hansen J.H. The Lombard effect observed in speech produced by cochlear implant users in noisy environments: A naturalistic study // J. Acoust. Soc. Am. 2017. V. 141. № 4. P. 2788–2799. https://doi.org/10.1121/1.4979927
  2. Bottalico P., Piper R.N., Legner B. Lombard effect, intelligibility, ambient noise, and willingness to spend time and money in a restaurant amongst older adults // Scientific Reports. 2022. V. 12. № 1. P. 1–9. https://doi.org/10.1038/s41598-022-10414-6
  3. Ludlow C.L., Cikoja D.B. Is there a self-monitoring speech perception system? // J. Commun. Disord. 1998. V. 31. № 6. P. 505–510. https://doi.org/10.1016/S0021-9924(98)00022-7
  4. Möttönen R., Watkins K.E. Using TMS to study the role of the articulatory motor system in speech perception // Aphasiology. 2012. V. 26. № 9. P. 1103–1118. https://doi.org/10.1080/02687038.2011.619515
  5. Lunichkin A.M., Shtin K.S. The Role of Auditory Feedback in Voice Control in Normal and Impaired Hearing // Neurosci Behav Physi. 2024. V. 54. № 3. P. 490–499. https://doi.org/10.1007/s11055-024-01616-8
  6. Garnier M., Henrich N. Speaking in noise: How does the Lombard effect improve acoustic contrasts between speech and ambient noise? // Comput. Speech Lang. 2014. V. 28. № 2. P. 580–597. https://doi.org/10.1016/j.csl.2013.07.005
  7. Fryd A.S., Van Stan J.H., Hillman R.E., Mehta D.D. Estimating subglottal pressure from neck-surface acceleration during normal voice production // J. Speech Lang. Hear. Res. 2016. V. 59. № 6. P. 1335–1345. https://doi.org/10.1044/2016_JSLHR-S-15-0430
  8. Björklund S., Sundberg J. Relationship between subglottal pressure and sound pressure level in untrained voices // J. Voice. 2016. V. 30. № 1. P. 15–20. https://doi.org/10.1016/j.jvoice.2015.03.006
  9. Морозов В.П. Биофизические основы вокальной речи. Л.: Наука, 1977. 232 с.
  10. Brumm H., Zollinger S.A. The evolution of the Lombard effect: 100 years of psychoacoustic research // Behaviour. 2011. V. 148. № 11-13. P. 1173–1198. https://doi.org/10.1163/000579511X605759
  11. Bottalico P., Passione I.I., Graetzer S., Hunter E.J. Evaluation of the starting point of the Lombard effect // Acta. Acust. United Acust. 2017. V. 103. № 1. P. 169–172. https://doi.org/10.3813/AAA.919043
  12. Stowe L.M., Golob E.J. Evidence that the Lombard effect is frequency-specific in humans // J. Acoust. Soc. Am. 2013. V. 134. № 1. P. 640–647. https://doi.org/10.1121/1.4807645
  13. Van Ngo T., Kubo R., Morikawa D., Akagi M. Acoustical analyses of tendencies of intelligibility in lombard speech with different background noise levels // J. Signal Process. 2017. V. 21. № 4. P. 171–174. https://doi.org/10.2299/jsp.21.171
  14. Kleczkowski P., Żak A., Król-Nowak A. Lombard effect in Polish speech and its comparison in English speech // Arch. Acoust. 2017. V. 42. № 4. P. 561–569. https://doi.org/10.1515/aoa-2017-0060
  15. Amazi D.K., Garber S.R. The Lombard sign as a function of age and task // J. Speech Lang. Hear. Res. 1982. V. 25. № 4. P. 581–585. https://doi.org/10.1044/jshr.2504.581
  16. Garnier M., Henrich N., Dubois D. Influence of sound immersion and communicative interaction on the Lombard effect // J. Speech Lang. Hear. Res. 2009. V. 53. № 3. P. 588–608. https://doi.org/10.1044/1092-4388(2009/08-0138)
  17. Zhao Y., Jurafsky D. The effect of lexical frequency and Lombard reflex on tone hyperarticulation // J. Phon. 2009. V. 37. № 2. P. 231–247. https://doi.org/10.1016/j.wocn.2009.03.002
  18. Anand S., Gutierrez D., Bottalico P. Acoustic-perceptual correlates of voice among steam train engineers: effects of noise and hearing protection // J. Voice. 2023. V. 37. № 3. P. 366–373. https://doi.org/10.1016/j.jvoice.2021.01.006
  19. Pittman A.L., Wiley T.L. Recognition of speech produced in noise // J. Speech Lang. Hear. Res. 2001. V. 44. № 3. P.487–496. https://doi.org/10.1044/1092-4388(2001/038)
  20. Patel R., Schell K.W. The Influence of Linguistic Content on the Lombard Effect // J. Speech Lang. Hear. Res. 2008. V. 51. № 1. P. 209–220. https://doi.org/10.1044/1092-4388(2008/016)
  21. Bottalico P. Lombard effect, ambient noise, and willingness to spend time and money in a restaurant // J. Acoust. Soc. Am. 2018. V. 144. № 3. P. EL209-EL214. https://doi.org/10.1121/1.5055018
  22. Roberts T., Morton R., Al-Ali S. Microstructure of the vocal fold in elderly humans // Clin. Anat. 2011. V. 24. № 5. P. 544–551. https://doi.org/10.1002/ca.21114
  23. Kuhn M.A. Histological changes in vocal fold growth and aging // Curr. Opin. Otolaryngol. Head. Neck. Surg. 2014. V. 22. № 6. P. 460-465. https://doi.org/10.1097/MOO.0000000000000108
  24. Pontes P., Brasolotto A., Behlau M. Glottic characteristics and voice complaint in the elderly // J. Voice. 2005. V. 19. № 1. P. 84–94. https://doi.org/10.1016/j.jvoice.2004.09.002
  25. Rodeno M.T., Sanchez-Fernandez J.M., Rivera-Pomar J.M. Histochemical and morphometrical ageing changes in human vocal cord muscles // Acta Otolaryngol. 1993. V. 113. № 3. P. 445–449. https://doi.org/10.3109/00016489309135842
  26. Letowski T., Frank T., Caravella J. Acoustical properties of speech produced in noise presented through supra-aural earphones // Ear Hear. 1993. V. 14. № 5. V. 332–338. https://doi.org/10.1097/00003446-199310000-00004
  27. Alghamdi N., Maddock S., Marxer R., Barker J., Brown G.J. A corpus of audio-visual Lombard speech with frontal and profile views // J. Acoust. Soc. Am. 2018. V. 143. № 6. P. EL523-EL529. https://doi.org/10.1121/1.5042758
  28. Junqua J.C. The Lombard reflex and its role on human listeners and automatic speech recognizers // J. Acoust. Soc. Am. 1993. V. 93. № 1. P. 510–524. https://doi.org/10.1121/1.405631
  29. Tang P., Xu Rattanasone N., Yuen I., Demuth K. Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech and Lombard speech // J. Acoust. Soc. Am. 2017. V. 142. № 2. P. 493–503. https://doi.org/10.1121/1.4995998
  30. Луничкин А.М., Андреева И.Г., Зайцева Л.Г., Гвоздева А.П., Огородникова Е.А. Изменение спектральных характеристик гласных звуков в русской речи на фоне шума // Акуст. журн. 2023. Т. 69. № 3. С. 340–350.
  31. Lunichkin A.M., Gvozdeva A.P., Andreeva I.G. The Impact of Visual Estimates of Talker-to-Listener Distance on Fundamental Frequency in Noise // Hum. Physiol. 2023. V. 49. № 3. P. 281–288. https://doi.org/10.1134/S0362119723700226
  32. Lu Y., Cooke M. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise // Speech Commun. 2009. V. 51. № 12. P. 1253–1262. https://doi.org/10.1016/j.specom.2009.07.002
  33. Cooke M., Lu Y. Spectral and temporal changes to speech produced in the presence of energetic and informational maskers // J. Acoust. Soc. Am. 2010. V. 128. № 4. P. 2059–2069. https://doi.org/10.1121/1.3478775
  34. Titze I.R. On the mechanics of vocal‐fold vibration // J. Acoust. Soc. Am. 1976. V. 60. № 6. P. 1366–1380. https://doi.org/10.1121/1.381230
  35. Alipour F., Berry D.A., Titze I.R. A finite-element model of vocal-fold vibration // J. Acoust. Soc. Am. 2000. V. 108. № 6. P. 3003–3012. https://doi.org/10.1121/1.381230
  36. Andreeva I.G., Dymnikowa M., Gvozdeva A.P., Ogorodnikova E.A., Pak S.P. Spatial separation benefit for speech detection in multi-talker babble-noise with different egocentric distances // Acta Acust. United. Acust. 2019. V. 105. № 3. P. 484–491. https://doi.org/10.3813/AAA.919330
  37. Marks L.E. Binaural summation of loudness: Noise and two-tone complexes // Percept. Psychophys. 1980. V. 27. № 6. P. 489–498. https://doi.org/10.3758/BF03198676
  38. Titze I.R. A model for neurologic sources of aperiodicity in vocal fold vibration // J. Speech Lang. Hear. Res. 1991. V. 34. № 3. P. 460–472. https://doi.org/10.1044/jshr.3403.460
  39. Sundberg J., Nordenberg M. Effects of vocal loudness variation on spectrum balance as reflected by the alpha measure of long-term-average spectra of speech // J. Acoust. Soc. Am. 2006. V. 120. № 1. P. 453–457. https://doi.org/10.1121/1.2208451
  40. Eyben F. et al. The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing // IEEE Transactions on affective computing. 2015. V. 7. № 2. P. 190–202.
  41. Gallardo L.F., Weiss B. Perceived interpersonal speaker attributes and their acoustic features // Preface & Acknowledgements. 2017. V. 61.
  42. Scherer K.R. Vocal communication of emotion: A review of research paradigms // Speech Commun. 2003. V. 40. № 1–2. P. 227–256.
  43. Gangamohan P., Kadiri S.R., Yegnanarayana B. Analysis of emotional speech — A review // Toward Robotic Socially Believable Behaving Systems-Volume I: Modeling Emotions. 2016. P. 205–238.
  44. Pick H., Siegel G., Fox P., Garber S., Kearney J. Inhibiting the Lombard effect // J. Acoust. Soc. Am. 1989. V. 85. № 2. P. 894–900. https://doi.org/10.1121/1.397561
  45. Therrien A., Lyons J., Balasubramaniam R. Sensory attenuation of self-produced feedback: the Lombard effect revisited // PLoS One. 2012. V. 7. № 11. P. 1–7. https://doi.org/10.1371/journal.pone.0049370
  46. Bottalico P., Graetzer S., Hunter E.J. Effect of training and level of external auditory feedback on the singing voice: volume and quality // J. Voice. 2016. V. 30 № 4. P. 434–442. https://doi.org/10.1016/j.jvoice.2015.05.010
  47. Hazan V., Baker R. Acoustic-phonetic characteristics of speech produced with communicative intent to counter adverse listening conditions // J. Acoust. Soc. Am. 2011. V. 130. № 4. P. 2139–2152. https://doi.org/10.1121/1.3623753
  48. Hadley L., Brimijoin W., Whitmer W. Speech, movement, and gaze behaviours during dyadic conversation in noise // Sci. Rep. 2019. V. 9. № 1. P. 1–8. https://doi.org/10.1038/s41598-019-46416-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characteristics of the amplitude-frequency spectrum of polyphonic noise in the speech frequency range for a level of 60 dB. The abscissa axis is the signal frequency, Hz; the ordinate axis is the signal amplitude, dB.

Download (559KB)
3. Fig. 2. Individual changes in the amplitude-frequency characteristics of vowel sounds in the speech of twelve speakers in polyphonic noise relative to silence. (a) — Change in intensity (∆I); (b) — change in the fundamental tone frequency (∆F0). 1–6 — male speakers; 7–12 — female speakers (for details, see Table 1). Medians are shown, n = 36.

Download (1MB)
4. Fig. 3. Changes in the characteristics of the vowel sounds [a], [i], [u] of male and female speakers in polyphonic noise at 60 and 72 dB relative to silence. (a) — Change in the intensity of the speakers’ voices (ΔI); (b) — change in F0 of the speakers’ voices (ΔF0). The minimum values, interquartile range, median, and maximum values of the change in characteristics are shown. ** — p < 0.01, nonparametric Mann–Whitney U-test, n = 216.

Download (312KB)
5. Fig. 4. Changes in the characteristics of the vowel sounds [a], [i], [u] of young and middle-aged speakers in polyphonic noise at 60 and 72 dB relative to silence. (a) — Change in the intensity of the speakers’ voices (ΔI); (b) — change in the F0 of the speakers’ voices (ΔF0). The minimum values, interquartile range, median, and maximum values of the change in characteristics are shown. * — p < 0.05, ** — p < 0.01, nonparametric Mann–Whitney U-test, n = 216

Download (314KB)
6. Fig. 5. Changes in the frequency of the fundamental tone of the voice (∆F0) for speakers of two types against the background of polyphonic noise compared to silence for stressed vowel sounds [a], [i], [u]. The abscissa shows the frequency of the fundamental tone of the voice in silence, Hz; the ordinate shows the change in the frequency of the fundamental tone of the voice against the background of polyphonic noise, Hz.

Download (2MB)

Copyright (c) 2025 The Russian Academy of Sciences