4D-моделирование кинематики избранной подсистемы Галактики

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Предложен основанный на принципе наибольшего правдоподобия четырехмерный метод оптимизации пространственно-кинематических моделей подсистем объектов Галактики, учитывающий измерительную и природную (динамическую) неопределенность 3D-скоростей и случайные ошибки гелиоцентрических расстояний (в данном случае тригонометрических параллаксов). Метод апробирован на мазерах в областях образования массивных звезд (HMSFR). По данным об этих объектах получены новые оценки фундаментальных параметров Галактики, свободные от систематических смещений из-за ошибок параллаксов, в частности, расстояния от Солнца до центра Галактики R0=7.88±0.12 кпк, угловой азимутальной скорости Солнца ω=30.40±0.20 км/с/кпк, линейной азимутальной скорости Солнца θ=239.6±4.0 км/с/кпк.

Full Text

Restricted Access

About the authors

И. И. Никифоров

Санкт-Петербургский государственный университет

Author for correspondence.
Email: i.nikiforov@spbu.ru
Russian Federation, Санкт-Петербург

References

  1. Громов А.О., Никифоров И.И. Построение штеккелевской модели Галактики: решение проблемы реалистичности вертикального распределения плотности // Письма в Астрон. журн. 2021. Т. 47. С. 383–402. https://doi.org/10.31857/S0320010821050053
  2. Никифоров И.И. Моделирование закона вращения плоской подсистемы и определение расстояния до центра Галактики: реалистичность модели и оптимизация ее сложности // Астрофизика. 1999а. Т. 42. С. 399–406. https://doi.org/
  3. Никифоров И.И. Моделирование закона вращения плоской подсистемы и определение расстояния до центра Галактики: анализ данных о газовых комплексах // Астрон. журн. 1999б. Т. 76. С. 403–418.
  4. Никифоров И.И., Веселова А.В. Численное исследование статистических свойств оценки расстояния до центра Галактики по геометрии сегментов спиральных рукавов // Письма в Астрон. журн. 2018. Т. 44. С. 763–783. https://doi.org/10.1134/S0320010818110049
  5. Расторгуев А.С., Уткин Н.Д., Заболотских М.В., Дамбис А.К., Байкова А.Т., Бобылев В.В. Галактические мазеры: кинематика, спиральная структура и динамическое состояние диска // Астрофиз. бюлл. 2017. Т. 72. С. 134–155. https://doi.org/ 10.1134/S1990341317020043
  6. Aghajani T., Lindegren L. Maximum likelihood estimation of local stellar kinematics // Astron. and Astrophys. 2013. V. 551. Id. A9. https://doi.org/10.1051/0004-6361/201220430
  7. Akimkin V.V., Nikiforov I.I., Kholtygin A.F. Distance scale calibration from kinematic analysis of an ensemble of the galactic planetary nebulae // Astron. and Astrophys. Transact. 2012. V. 27. P. 365–368.
  8. Bian S.B., Xu Y., Li J.J., Wu Y.W., Zhang B., Chen X., Li Y.J., Lin Z.H., Hao C.J., Liu D.J. Parallax of star-forming region G027.22+0.14 // Astron. J. 2022. V. 163. Id. 54. https://doi.org/
  9. Ding P.-J., Zhu Z., Liu J.-Ch. Local standard of rest based on Gaia DR2 catalog // Res. Astron. and Astrophys. 2019. V. 19. Id. 68. https://doi.org/10.1088/1674-4527/19/5/68
  10. Hyland L.J., Reid M.J., Orosz G., Ellingsen S.P., Weston S.D., Kumar J., Dodson R., Rioja M.J., Hankey W.J., Yates-Jones P.M., and 4 co-authors. Inverse MultiView. II. Microarcsecond trigonometric parallaxes for southern hemisphere 6.7 GHz methanol masers G232.62+00.99 and G323.74–00.26 // Astrophys. J. 2023. V. 953. Id. 21. https://doi.org/10.3847/1538-4357/acdbc5
  11. Hyland L.J., Ellingsen S.P., Reid M.J., Kumar J., Orosz G. Trigonometric parallax, proper motion, and structure of three southern hemisphere methanol masers // Proc. IAU Symp. No. 380 “Cosmic Masers: Proper Motion toward the Next-Generation Large Projects”. 2024. P. 106–110. https://doi.org/
  12. Mai X., Zhang B., Reid M.J., Moscadelli L., Xu S., Sun Y., Zhang J., Chen W., Wen S., Luo Q., Menten K.M., Zheng X., Brunthaler A., Xu Y., Wang G. The parallax and 3D kinematics of water masers in the massive star-forming region G034.43+0.24 // Astrophys. J. 2023. V. 949. Id. 10. https://doi.org/10.3847/1538-4357/acc52a
  13. Nikiforov I.I., Kazakevich E.E. Components of open cluster system of the Galaxy from kinematic analysis // Astron. and Astrophys. Transact. 2006. V. 25. P. 189–194. https://doi.org/
  14. Nikiforov I.I. Exclusion of measurements with excessive residuals (blunders) in estimating model parameters // Astron. and Astrophys. Transact. 2012. V. 27. P. 537–538. https://doi.org/
  15. Reid I.N. The HR diagram and the Galactic distance scale after Hipparcos // Annu. Rev. Astron. and Astrophys. 1999. V. 37. P. 191–237. https://doi.org/
  16. Reid M.J., Menten K.M., Brunthaler A., Zheng X.W., Dame T.M., Xu Y., Wu Y., Zhang B., Sanna A., Sato M., and 6 co-authors. Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the Milky Way // Astrophys. J. 2014. V. 783. Id. 130. https://doi.org/10.1088/0004-637X/783/2/130
  17. Reid M.J., Menten K.M., Brunthaler A., Zheng X.W., Dame T.M., Xu Y., Li J., Sakai N., Wu Y., Immer K., and 8 co-authors. Trigonometric parallaxes of high-mass star-forming regions: Our view of the Milky Way // Astrophys. J. 2019. V. 885. Id. 131. https://doi.org/10.3847/1538-4357/ab4a11
  18. Sakai D., Oyama T., Nagayama T., Kobayashi H., Honma M. Astrometric observations of water maser sources toward the Galactic Center with VLBI // J. Phys. Conf. Ser. 2022. V. 2145. Id. 012011. https://doi.org/10.1088/1742-6596/2145/1/012011
  19. VERA collaboration, Hirota T., Nagayama T., Honma M., Аdachi Y., Burns R.A., Chibueze J.O., Choi Y.K., Hachisuka K., Hada K., and 52 co-authors. The First VERA Astrometry Catalog // Publ. Astron. Soc. Japan. 2020. V. 72. Id. 50. https://doi.org/10.1093/pasj/psaa018
  20. Xu Y., Bian S.B., Reid M.J., Li J.J., Menten K.M., Dame T.M., Zhang B., Brunthaler A., Wu Y.W., Moscadelli L., Wu G., Zheng X.W. Trigonometric parallaxes of four star-forming regions in the distant inner Galaxy // Astrophys. J. Suppl. Ser. 2021. V. 253. Id. 1. https://doi.org/10.3847/1538-4365/abd8cf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of HMSFR class maser sources projected onto the Galactic plane. The Sun is at the origin. The axis is directed toward the Galactic center, the axis is in the direction of the Galaxy rotation. The bars represent the uncertainty in the heliocentric distance to the object, generated by the measurement error of the trigonometric parallax.

Download (211KB)
3. Fig. 2. Dependences of the statistics characterizing the quality of the solution on the order of the model for the final sample (, ) – the objective function L(1) (left panel) and natural variances of the velocities , , and (right panel). The large circle corresponds to the optimal order (see text).

Download (139KB)
4. Fig. 3. Rotation curve of the HMSFR maser subsystem for the optimal order model (). Red symbols correspond to objects remaining in the final sample, green ones to excluded objects. For error bars, see text. Solid blue line – order model. Symbol “” marks the point (), see text

Download (249KB)

Copyright (c) 2025 The Russian Academy of Sciences