AUTOWAVE SWITCHING IN THE LIGHTNING CHANNEL

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Lightning is represented as a multistable system demonstrating the ability to self-regulation by maintaining its own electroneutrality. Within the framework of the description of the lightning channel using telegraphic equations, a nonlinear parabolic equation is obtained for the nonlinear voltage dependence of the rate of change of the plasma cord charge. The analysis of the model shows that the lightning channel alternately develops in one of two modes, each of which is characterized by damping of the longitudinal current from one end of the lightning to the other. The transition between the modes is realized by excitation of a fast switching wave. Lightning development within each mode is accompanied by recharging of the leader system sheath and movement of the point of zero charge of the sheath (called the lightning reversal point) in the direction of longitudinal current growth. The movement of the reversal point is caused by the change of the mean potential of the discharge tree in the process of sheath recharge and explains the observed dynamics of lightning transients.

Sobre autores

D. Iudin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences; Volga Region Research Medical University

Email: iudin@ipfran.ru
Nizhny Novgorod, Russia; Nizhny Novgorod, Russia

Bibliografia

  1. Iudin D.I., Syssoev A.A., Rakov V.A. // Radiophysics and Quantum Electronics. 2021. V. 64. P. 867. https://doi.org/10.1007/s11141-022-10178-z
  2. Rakov V.A. // Surveys Geophys. 2013. V. 34. № 6. P. 701. https://doi.org/10.1007/s10712-013-9230-6
  3. Pantuso J.G., da Silva C.L. // J. Geophys. Res.: Atmospheres. 2024. V. 129. P. 1–24. https://doi.org/10.1029/2024JD041596
  4. Zhu Y., Bitzer P., Rakov V., Stock M., Lapierre J., DiGangi E. et al. // Geophys. Res. Lett. 2021. V. 48. P. e2021GL096714. https://doi.org/10.1029/2021GL096714
  5. Urbani M., Montanya` J., van der Velde O., Arcanjo M., Lo` pez J. // Geophys. Res. Lett. 2022. V. 49. P. e2021GL097272.
  6. Rakov V., Uman M., Thottappillil R. J. Geophys. Res. 1994. V. 99. P. 10745.
  7. Mazur V., Ruhnke L.H. // J. Geophys. Res. 1993. V. 98. P. 12913. https://doi.org/10.1029/93JD00626
  8. Mazur V., Ruhnke L.H. // J. Geophys. Res. 1998. V. 103(D18). P. 23299. https://doi.org/10.1029/98JD02120
  9. Mazur V., Ruhnke L.H. // J. Geophys. Res. Atmos. 2014. V. 119. P. 23299. https://doi.org/10.1002/2013JD020494
  10. Qie X., Pu Y., Jiang R., Sun Z., Liu M., Zhang H., Li X., Lu G., Tian Y. J. Geophys. Res.: Atmospheres. 2017. V. 122. P. 586.
  11. Qie X., Yuan S., Zhang H., Jiang R., Wu Z., Liu M., Sun Z., Pu Y., Li J., Srivastava A., Ma Z., Lu G. // Earth Planetary Phys. 2019. V. 3. P. 102.
  12. da Silva C.L., Sonnenfeld R.G., Edens H.E., Krehbiel P.R., Quick M.G., Koshak W.J. // J. Geophys. Res.: Atmospheres. 2019. V. 124. P. 9442. https://doi.org/10.1029/2019JD030693
  13. da Silva C.L., Winn W.P., Taylor M., Aulich G.D., Hunyady S.J., Eack K.B. et al. // Geophys. Res. Lett. 2023. V. 50. P. e2023GL105041. https://doi.org/10.1029/2023GL105041
  14. Bazelyan J.M., Raizer Y.P. // Physics of lightning and lightning protection. Moscow: Fizmatlit, 2001.
  15. Iudin D.I. // Atmospheric Res. 2021. V. 256. P. 1. https://doi.org/10.1016/j.atmosres.2021.105560
  16. Williams E.R., Heckman S. // J. AerospaceLab. 2012. V. 5. P. 1.
  17. Baum C., Baker L. New York: Hemisphere, 1990. P. 17.
  18. Rakov V.A., DeCarlo B.A. // J. Geophys. Res.: Atmospheres. 1998. V. 103. P. 1879.
  19. Bazelyan J.M., Raizer Y.P. Lightning Physics and Lightning Protection. Bristol, Philadelphia: Institute of Physics Publishing, 2000.
  20. Raizer Y.P. Gas discharge physics. Dolgoprudny: Publishing House “Intelligence”, 2009.
  21. Bazelyan E.M., Raizer Y.P., Aleksandrov N.L. // Plasma Sources Science and Technology. 2008. V. 17. P. 024015. https://doi.org/10.1088/0963-0252/17/2/024015
  22. Loskutov A.Y., Michailov A.S. Introduction into synergetics. Moscow: NAUKA Publishers, 1990.
  23. Gallimberti I., Bacchiega G., Bondiou-Clergerie A., Lalande P. // Comptes Rendus Physique. 2002. V. 3. P. 1335. https://doi.org/10.1016/S1631-0705(02)01414-7
  24. Marshall T.C., McCarthy M.P., Rust W.D. // J. Geophys. Res. 1995. V. 100. P. 7097. https://doi.org/10.1029/95JD00020
  25. Ding Z., Rakov V.A., Zhu Y., Tran M.D. // J. Geophys. Res.: Atmospheres. 2020 V. 125. № 23. P. e2020JD033305. https://doi.org/10.1029/2020JD033305
  26. Pu Y., Cummer S.A. // Geophys. Res. Lett. 2019. V. 46. P. 13556. https://doi.org/10.1029/2019GL085635
  27. Jiang R., Yuan S., Qie X., Liu M., Wang D. // Geophys. Res. Lett. V. 49. https://doi.org/10.1029/2021GL096846
  28. Horton R. // Geological Society of America Bulletin. 1945. V. 56(3). P. 275. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO
  29. Strahler A. // Geological Society of America Bulletin. 1952. V. 38. P. 1117.
  30. Strahler A. Eos, Transactions American Geophysical Union. 1957. V. 38. P. 913.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025