Self-assembly of 3D mesostructures using local ion-plasma treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The technology of self-assembly of three-dimensional cubic mesostructures is presented, based on ion-plasma action on certain local areas of flat blanks formed from Cr and Cr/SiO2 films. The driving force of self-assembly is the stress gradient arising in chromium during ion bombardment in the plasma of Ar RF induction discharge. Folding of the blank into a three-dimensional structure occurs when the elements of the blank are suspended as a result of etching of the underlying silicon.

Full Text

Restricted Access

About the authors

A. S. Babushkin

NRC “Kurchatov institute”

Author for correspondence.
Email: artem.yf-ftian@mail.ru

Valiev IPT, Yaroslavl Branch

Russian Federation, Yaroslavl

R. V. Selyukov

NRC “Kurchatov institute”

Email: artem.yf-ftian@mail.ru

Valiev IPT, Yaroslavl Branch

Russian Federation, Yaroslavl

I. I. Amirov

NRC “Kurchatov institute”

Email: artem.yf-ftian@mail.ru

Valiev IPT, Yaroslavl Branch

Russian Federation, Yaroslavl

V. V. Naumov

NRC “Kurchatov institute”

Email: artem.yf-ftian@mail.ru

Valiev IPT, Yaroslavl Branch

Russian Federation, Yaroslavl

M. O. Izyumov

NRC “Kurchatov institute”

Email: artem.yf-ftian@mail.ru

Valiev IPT, Yaroslavl Branch

Russian Federation, Yaroslavl

References

  1. Zhang Y., Zhang F., Yan Z., Ma Q., Li X., Huang Y., Rogers J.A. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials // Nature Reviews Materials. 2017. V. 2. № 4. P. 1–17. https://doi.org/10.1038/natrevmats.2017.19
  2. Karnaushenko D., Kang T., Bandari V.K., Zhu F., Schmidt O.G. 3D self‐assembled microelectronic devices: concepts, materials, applications // Advanced Materials. 2020. V. 32. № 15. P. 1902994. https://doi.org/10.1002/adma.201902994
  3. Liu N. Guo H., Fu L., Kaiser S., Schweizer H., Giessen H. Three-dimensional photonic metamaterials at optical frequencies // Nature materials. 2008. V. 7. №. 1. P. 31–37. https://doi.org/10.1038/nmat2072
  4. Bo R., Xu S., Yang Y., Zhang Y. Mechanically-guided 3D assembly for architected flexible electronics // Chemical Reviews. 2023. V. 123. № 18. P. 11137–11189. https://doi.org/10.1021/acs.chemrev.3c00335
  5. Guo X., Xue Z., Zhang Y. Manufacturing of 3D multifunctional microelectronic devices: challenges and opportunities // NPG Asia Materials. 2019. V. 11. № 1. P. 29. https://doi.org/10.1038/s41427-019-0129-7
  6. Chen S., Chen J., Zhang X., Li Z.Y., Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding” // Light: Science & Applications. 2020. V. 9. № 1. P. 75. https://doi.org/10.1038/s41377-020-0309-9
  7. Rogers J., Huang Y., Schmidt O.G., Gracias D.H. Origami mems and nems // Mrs Bulletin. 2016. V. 41. № 2. P. 123–129. https://doi.org/10.1557/mrs.2016.2
  8. Zhang Z., Tian Z., Mei Y., Di Z. Shaping and structuring 2D materials via kirigami and origami // Materials Science and Engineering: R: Reports. 2021. V. 145. P. 100621. https://doi.org/10.1016/j.mser.2021.100621
  9. Cho J.H., Keung M.D., Verellen N., Lagae L., Moshchalkov V.V., Van Dorpe P., Gracias D.H. Nanoscale origami for 3D optics // Small. 2011. V. 7. № 14. P. 1943–1948. https://doi.org/10.1002/smll.201100568
  10. Mak Y.X., Dijkshoorn A., Abayazid M. Design Methodology for a 3D Printable Multi‐Degree of Freedom Soft Actuator Using Geometric Origami Patterns // Advanced Intelligent Systems. 2024. V. 6. № 6. P. 2300666. https://doi.org/10.1002/aisy.202300666
  11. Salerno M., Firouzeh A., Paik J. A low profile electromagnetic actuator design and model for an origami parallel platform // Journal of Mechanisms and Robotics. 2017. V. 9. № 4. P. 041005. https://doi.org/10.1115/1.4036425
  12. Novelino L.S., Ze Q., Wu S., Paulino G.H., Zhao R. Untethered control of functional origami microrobots with distributed actuation // Proceedings of the National Academy of Sciences. 2020. V. 117. № 39. P. 24096–24101. https://doi.org/10.1073/pnas.2013292117
  13. Yan W., Li S., Deguchi M., Zheng Z., Rus D., Mehta A. Origami-based integration of robots that sense, decide, and respond // Nature Communications. 2023. Т. 14. № 1. P. 1553. https://doi.org/10.1038/s41467-023-37158-9
  14. Xu W., Li T., Qin Z., Huang Q., Gao H., Kang K., Park J., Buehler M.J., Khurgin J.B., Gracias D.H. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity // Nano letters. 2019. V. 19. № 11. P. 7941–7949. https://doi.org/10.1021/acs.nanolett.9b03107
  15. Guo X., Li H., Yeop Ahn B., Duoss E.B., Hsia K.J., Lewis J.A., Nuzzo R.G. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications // Proceedings of the National Academy of Sciences. 2009. V. 106. № 48. P. 20149–20154. https://doi.org/10.1073/pnas.0907390106
  16. Randhawa J.S., Gurbani S.S., Keung M.D., Demers D.P., Leahy-Hoppa M.R., Gracias D.H. Three-dimensional surface current loops in terahertz responsive microarrays // Applied Physics Letters. 2010. V. 96. № 19. https://doi.org/10.1063/1.3428657
  17. Yu Y., Lorenz P., Strobel C., Zajadacz J., Albert M., Zimmer K., Kirchner R. Plasmonic 3D Self-Folding Architectures via Vacuum Microforming // Small. 2022. V. 18. № 7. P. 2105843. https://doi.org/10.1002/smll.202105843
  18. Joung D., Nemilentsau A., Agarwal K., Dai C., Liu C., Su Q., Li J., Low T., Koester S.J., Cho J.H. Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement // Nano letters. 2017. V. 17. № 3. P. 1987–1994. https://doi.org/10.1021/acs.nanolett.6b05412
  19. Anacleto P., Gultepe E., Gomes S., Mendes P.M., Gracias D.H. Self-folding microcube antennas for wireless power transfer in dispersive media. Technology // 2016. V. 04. № 02. P. 120–129. https://doi.org/10.1142/S2339547816500047
  20. McCaskill J.S., Karnaushenko D., Zhu M., Schmidt O.G. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms // Advanced Materials. 2023. V. 35. № 51. P. 2306344. https://doi.org/10.1002/adma.202306344
  21. Bolanos Quinones V.A.,Zhu H., Solovev A.A., Mei Y., Gracias D.H. Origami biosystems: 3D assembly methods for biomedical applications // Advanced Biosystems. 2018. V. 2. № 12. P. 1800230. https://doi.org/10.1002/adbi.201800230
  22. Azam A., Laflin K.E., Jamal M., Fernandes R., Gracias D.H. Self-folding micropatterned polymeric containers // Biomedical microdevices. 2011. V. 13. P. 51–58. https://doi.org/10.1007/s10544-010-9470-x
  23. Fernandes R., Gracias D.H. Self-folding polymeric containers for encapsulation and delivery of drugs // Advanced drug delivery reviews. 2012. V. 64. № 14. P. 1579–1589. https://doi.org/10.1016/j.addr.2012.02.012
  24. Cools J., Jin Q., Yoon E., Alba Burbano D., Luo Z., Cuypers D., Callewaert G., Braeken D. A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells // Advanced Science. 2018. V. 5. № 4. P. 1700731. https://doi.org/10.1002/advs.201700731
  25. Leong T.G., Benson B.R., Call E.K., Gracias D.H. Thin film stress driven self‐folding of microstructured containers // Small. 2008. V. 4. № 10. P. 1605–1609. https://doi.org/10.1002/smll.200800280
  26. Zhang J., Reif J., Strobel C., Chava P., Erbe A., Voigt A., Mikolajick T., Kirchner R.Dry release of MEMS origami using thin Al2O3 films for facet-based device integration // Micro and Nano Engineering. 2023. V. 19. P. 100179. https://doi.org/10.1016/j.mne.2023.100179
  27. Bassik N., Stern G.M., Gracias D.H. Microassembly based on hands free origami with bidirectional curvature // Applied physics letters. 2009. V. 95. № 9. https://doi.org/10.1063/1.3212896
  28. Liu Z., Du H., Li Z.Y., Fang N.X., Li J. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation // Apl. Photonics. 2018. V. 3. № 10. https://doi.org/10.1063/1.5043065
  29. Mao Y., Zheng Y., Li C., Guo L., Pan Y., Zhu R., Xu J., Zhang W., Wu W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas // Advanced materials. 2017. V. 29. № 19. P. 1606482. https://doi.org/10.1002/adma.201606482
  30. Babushkin A.S., Uvarov I.V., Amirov I.I. Effect of low-energy ion-plasma treatment on residual stresses in thin chromium films // Technical Physics. 2018. V. 63. № 12. P. 1800–1807. https://doi.org/10.1134/S1063784218120228
  31. Babushkin A., Selyukov R., Amirov I. Effect of Ar ion-plasma treatment on residual stress in thin Cr films // Proc. of SPIE, 2019. V. 11022. P. 1102223–1. https://doi.org/10.1117/12.2521617
  32. Fang W. Determining mean and gradient residual stresses in thin films using micromachined cantilevers / Fang W., Wickert J.A. //Journal of Micromechanics and Microengineering. 1996. V. 6. № 3. P. 301. https://doi.org/10.1088/0960-1317/6/3/
  33. Selyukov R.V., Amirov I.I., and Naumov V.V. Effect of ion-plasma treatment on the phase composition and electrical resistivity of nanometer-thick tungsten films, Russ. Microelectron., 2022, vol. 51, no. 6, pp. 488–496. https://doi.org/10.1134/s1063739722700081
  34. Uvarov I.V., Naumov V.V., and Amirov I.I. Method of manufacture of a beam with a setted bend, RF Patent 2630528, 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Result of self-assembly simulation of a cubic Cr container (a), top view of the container blank (b). The arrows indicate the beam structures

Download (35KB)
3. Fig. 2. Schematic representation of the manufactured cantilevers: without a SiO2 sublayer (a), with a SiO2 sublayer and with an oxide offset of 20 μm (b)

Download (16KB)
4. Fig. 3. SEM image of Cr cantilevers with the ratios of the thicknesses of the lower and upper Cr layers of 58 : 242 nm (a) and 53 : 247 nm (b), respectively

Download (9KB)
5. Fig. 4. SEM image of Cr/SiO2 cantilevers with the ratios of the thicknesses of the lower and upper Cr layers of 58 : 242 nm (a) and 53 : 247 nm (b), respectively. SEM image of Cr/SiO2 cantilevers, top view (c)

Download (18KB)
6. Fig. 5. The flow chart for manufacturing containers entirely from Cr. (a) Oxidation of the Si wafer. (b) SiO2 lithography. (c) Deposition of the 300 nm Cr film and formation of planar blanks from it. (d) Formation of a 600 nm a-Si mask. (e) Ion-plasma treatment of the Cr film. (e) Plasma-chemical etching of the a-Si and c-Si mask. The numbers indicate the elements of the container: 1 - fastener; 2 - face; 3 - beam

Download (27KB)
7. Fig. 6. The flow chart for manufacturing containers with Cr/SiO2 faces. (a) Oxidation of the Si wafer. (b) SiO2 lithography. (c) Deposition of the 300 nm Cr film and formation of planar blanks from it. (d) Formation of a 600 nm a-Si mask. (e) Ion-plasma treatment of the Cr film. (e) Plasma chemical etching of a-Si and Si mask

Download (28KB)
8. Fig. 7. SEM images of the obtained 3D structures based on Cr/SiO2 (left) and Cr (right), not subjected to IPO (a); subjected to IPO in the mode of –30 V/60 min (b) and in the mode of –35 V/60 min (c)

Download (35KB)
9. Fig. 8. SEM images of containers with Cr/SiO2 (a) and Cr (b) faces

Download (23KB)

Copyright (c) 2025 Russian Academy of Sciences