Greenhouse gases balance and climate change: role of permafrost degradation in the Arctic
- Authors: Semiletov I.P.1,2, Shakhova N.E.1,3
-
Affiliations:
- V. I. Il’ichev Pacific Oceanological Institute, FEB RAS
- Sakhalin State University/SakhTECH
- M. A. Sadovskу Institute of Geosphere Dynamics
- Issue: No 4 (2024)
- Pages: 5-43
- Section: Earth and Environment Sciences
- URL: https://freezetech.ru/0869-7698/article/view/676028
- DOI: https://doi.org/10.31857/S0869769824040015
- EDN: https://elibrary.ru/IRWLDY
- ID: 676028
Cite item
Full Text
Abstract
One of the most prominent problems of modern geochemistry and climatology is the understanding of the patterns of migration of the main greenhouse gases, carbon dioxide (CO2) and methane (CH4). The purpose of this work is a brief review of the widely accepted concept of the dominant role of the anthropogenic factor in climate change, which is considered in the paleo-context of changes in natural climate cycling over the past hundreds of thousands of years, and in present time. It is shown that to understand the functioning of the climate system, it is necessary to take into account the geological factor – changes in the state of terrestrial and subsea permafrost: the huge reservoirs of ancient carbon, which is included in biogeochemical cycles due to permafrost degradation in warm geological epochs. This leads to imbalance in the carbon cycling, which manifests itself in massive emissions of CO2 and CH4 into the atmosphere. During cold geological epochs, carbon accumulates in permafrost, which stores amounts of carbon exceeding the carbon exchange between atmosphere, biosphere, land and ocean. Considering the Arctic region as the key climate “kitchen” we state that present time is characterized by unique long-lasting warming after the Holocene optimum, which occurred in the northern hemisphere approximately 5–6 thousand years ago. It contradicts with the Milankovich’ 105-kyrs cycling: after the Holocene optimum, the geological ice-epoch should have occurred, which should have led to about 100-meters sea level lowering and the transformation of the shallow Arctic shelf into land. However, warming has continued and the level of the World Ocean continues to rise, which has already led to an extended high sea level on the Arctic shelf – unique in geological history. This caused the lasting contact of relatively warm bottom waters (~(–1) °C) and frozen sediments (~(–25) °C) of the Arctic shelf for 5–6 thousand years longer than in previous warm geological epochs, which led to the progressive degradation of subsea permafrost, formation of deep or through taliks (zones of melted permafrost) and destabilization of Arctic shallow hydrates. It is shown that the increasing runoff of Siberian rivers, mobilization, transport, and transformation of terrestrial organic matter in the Arctic land–shelf system determines the sedimentation and biogeochemistry of the East Siberian Arctic Shelf – the broadest and shallowest shelf in the World Ocean, which makes up more than 70% of the Northern Sea Route area. This review paper presents selected key results obtained by the authors and their colleagues over the past 30 years, and identifies a number of problems facing modern climatology.
Keywords
Full Text

About the authors
Igor P. Semiletov
V. I. Il’ichev Pacific Oceanological Institute, FEB RAS; Sakhalin State University/SakhTECH
Author for correspondence.
Email: ipsemiletov@gmail.com
ORCID iD: 0000-0003-1741-6734
Corresponding Member of RAS, Doctor of Sciences in Geography, International Center of the Far-Eastern and Arctic Seas (named by admiral S.O. Makarov)
Russian Federation, Vladivostok; Yuzhno-SakhalinskNatalia E. Shakhova
V. I. Il’ichev Pacific Oceanological Institute, FEB RAS; M. A. Sadovskу Institute of Geosphere Dynamics
Email: nataliaeshakhova@gmail.com
Doctor of Sciences in Geology and Mineralogy
Russian Federation, Vladivostok; MoscowReferences
- Barnola J. M., Raynaud D., Korotkevich Ye.S., Lorius C. Vostok ice core provides 160,000 year record of atmospheric . Nature. 1987;329:408–414.
- Chappellaz J., Barnola J. M., Raynaud D., Korotkevich Ye. S., Lorius C. Ice core record of atmospheric methane over the past 160,000 years. Nature. 1990;345:127–131.
- Jouzel J., Lorius C., Petit J. R., Genthon C., Barkov N. I., Kotlyakov V. M., Petrov V. M. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000). Nature. 1987;329(6138):403–408.
- Jouzel J., Barkov N. I., Barnola J. M. Bender M., Chappelaz J., Genthon G., Kotlyakov V. M., Lipenkov V., Lorius C., Petit J. R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stivenard M., Yiou F., Yiou P. Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature. 1993;364:407–412.
- Lorius C., Barkov N. I., Jouzel J., Korotkevich Ye.S., Kotlyakov V. M., Raynaud D. Antarctic Ice Core: and climatic change over the last climatic cycle. EOS. 1988;69(26):681–684.
- Lorius C., Jouzel J., Raynaud D., Hansen J., Letreut H. The ice-core record: climate sensitivity and future greenhouse warming. Nature. 1990;347:139–145.
- Serreze M. C., Francis J. The Arctic amplification debate. Climatic Change. 2006;76:241–264. doi: 10.10007/s10584-005-9017.
- ACIA (Arctic Climate Impact Assessment): Overview report. Cambridge Univ. Press; 2004. 140 p.
- IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press; 2001. 881 p.
- Bydiko M. I. Climate in the past and present, Leningrad: Hydromet Press; 1980. 351 p. (In Russ.).
- Imbri J., Imbri K. P. Mystery of ice epochs. Мoscow: Prohress Press; 1988. 263 p. (In Russ).
- Vernadsky V. I. Chemical structure of the Earth biosphere and surrounding planets. Мoscow: Nauka Press; 1965. 373 p. (In Russ.).
- Lewis S. L., Maslin M. A. Defining the Anthropocene. Nature. 2015;519:171–180.
- IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. Geneva, Switzerland; 2023. P. 35–115. doi: 10.59327/IPCC/AR6-9789291691647.
- Tarnocai C., Canadell J. G., Schuur E. A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Сycle. 2009;23. GB2023. doi: 10.1029/2008GBO03327.
- Semiletov I. P., Shakhova N. E., Sergienko V. I., Pipko I. I., Dudarev O. On Carbon Transport and Fate in the East Siberian Arctic Land-Shelf-Atmosphere System. Environment Research Letters. 2012;7. doi: 10.1088/1748-9326/7/1/015201.
- Shakhova N., Semiletov I., Chuvilin E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences. 2019;9(6).
- Soloviev V. A. (ed.). Cryothermy and natural hydrates in the Arctic Ocean. Leningrad: Sevmorgeologiya Press; 1987. 150 p.
- Gramberg I. S., Kulakov Yu. N., Pogrebitsky Yu. E., Sorokov D. S. Arctic oil and gas super basin. In: X World Petroleum Congress. London; 1983. P. 93–99.
- Shakhova N., Semiletov I., Leifer I., Salyuk A., Rekant P., Kosmach D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research: Oceans. 2010;115(C8).
- Shakhova N. E., Semiletov I. P. Methane Hydrate Feedbacks. In: Martin Sommerkorn & Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August; 2009. P. 81–92. ISBN: 978-2-88085-305-1.
- Zavarzin G. A., Clark U. Biosphere and climate: biologist’s view. Priroda. 1987;(6):65–77. (In Russ.).
- Canadell J. G., Raupach M. R. Land Carbon Cycle Feedbacks. In: Martin Sommerkorn & Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August; 2009. P. 69–80. ISBN: 978-2-88085-305-1.
- Genthon C., Barnola J. M., Raynaud D., Lorius C., Jouzel J., Barkov N. I., Korotkevich Ye. S., Kotlyakov V. M. Vostok ice core: climatic response to and orbital forcing changes over the last clymatic cycle. Nature. 1987;329(6138):414–418.
- Petit J., Jouzel J., Raynaud D. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399:429–436. doi: 10.1038/20859.
- Rigby M., Prinn R. G., Fraser P. J. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 2008;35. L22805. doi: 10.1029/2008GL036037.
- Semiletov I. P., Zimov S. A., Voropaev Yu. V., Davydov S. P., Barkov N. I., Gusev A. N., Lipenkov V. Ya. Atmospheric methane in past and present. Trans. (Doklady) Russian Acad. Sci. 196;345(5): 155–159.
- Semiletov I. P., Pipko I. I., Pivovarov N. Ya., Popov V. V., Zimov S. A., Voropaev Yu. V., Daviodov S. P. Atmospheric carbon emission from North Asian Lakes: a factor of global significance. Atmospheric Environment. 1996;30(10/11):1657–1671.
- Semiletov I. P. On aquatic sources and sinks of and in the Polar Regions. J. Atmos. Sci. 1999;56:286–306.
- Zimov S. A., Voropaev Yu. V., Semiletov I. P. et al. North Siberian Lakes: a methane source fueled by Pleistocene carbon. Science. 1997;277:800–802.
- Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science. 2010;327(5970):1246–1250.
- Shakhova N. E., Alekseev V. A., Semiletov I. P. Predicted methane emission on the East Siberian shelf. Doklady Earth Sciences. 2010;430(2):190–193.
- Seneviratne S. I., Nicholls N., Easterling D. et al. Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK; New York, NY, USA: Cambridge University Press; 2012. P. 109–230.
- Dutton A., Carlson A. E., Long A. J., Milne G. A., Clark P. U., DeConto R., Horton B. P., Rahmstorf S., Raymo M. E. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science. 2015;349. aaa4019. doi: 10.1126/science.aaa4019.
- Solomon S., Plattner G.-K., Knutti R., Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. PNAS. 2009;106(6):1704–1709.
- Semiletov I. P. Ancient Ice Air Content of the Vostok Ice Core. In: Oremland S. (ed.). Biogeochemistry of Trace Gases. New York: Chapman and Hall Inc.; 1993. P. 46–59.
- Semiletov I. P. Carbon cycle and global changes in the past and present. In: Chemistry of seas and oceans. Moscow: Nauka Press; 1995. P. 130–154. (In Russ.).
- Kennett J. P., Cannariato K. G., Hendy I. L., Behl R. J. Methane hydrates in Quaternary Climate Change. Washington, D.C.: AGU; 2003. 317 p.
- Kvenvolden K. A. Gas hydrates: Geological perspective and global change. Rev. Geophys. 1993;31:173–187.
- Golytsin G. S., Ginsburg A. S. Estimation of possible abrupt methane warming 55 mln years in the past. Doklady Academy of Sciences. 2007;413(6). (In Russ.).
- Chappellaz J., Blunier T., Raynaud D., Barnola J. M., Schwander J., Stauffer B. Synhronous changes in atmospheric and Greenland climate between 40 and 8 kyr BP. Nature. 1993;336:443–445.
- Etheridge D. M., Steele L. P., Francey R. J., Langenfelds R. L. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research: Atmospheres. 1998;103(D13):15979–15993.
- Sapart C. J., Monteil G., Prokopiou M., van de Wal R. S. W., Kaplan J. O., Sperlich P. et al. Natural and anthropogenic variations in methane sources during the past two millennia. Nature. 2012;490(7418):85–89.
- Rasmussen R. A., Khalil M. A. K. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. J .Geoph. Res. 1984;89(D7):11599–11605.
- Chappellaz J. et al. Changes in atmospheric CH4 gradient between Greenland and Antarctica during Holocene. J. Geophys. Res. 1997;102(D13):15987–15997.
- Dallenbach A., Blunier T., Fluckiger J., Stauffer B. Changes in the atmospheric gradient between Greenland and Antactica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett. 2000;27(7):1005–1008.
- Cuffey K. M., Clow G. D., Alley R. B., Stuiver M., Waddington E. D., Saltus R. W. Large Arctic Temperature Change at the Wisconsin-Holocene Glacial Transition. Science. 1995;270:455–458.
- Romanovskii N. N., Gavrilov A. V., Tumskoy V. E. Lake thermokarst and its role in formation of the coastal zone of the Laptev Sea shelve. Earth Cryosphere. 1999;3(3):79–91. (In Russ.).
- Romanovskii N. N., Hubberten H. W., Gavrilov A. V., Eliseeva A. A., Tipenko G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Letters. 2005;25(2):167–182.
- Feely R. A., Sabine C. L., Takahashi T., Wanninkhof R. Uptake and Storage of Carbon Dioxide in the Ocean: the Global Survey. Oceanography. 2001;14(4):18–32.
- Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tillbrook B., Bates N., Wanninkhof R., Feely R. A., Sabine C., Olafsson J., Nojiri Y. Global sea-air flux based on climatological surface ocean , and seasonal biological and temperature effects. Deep-Sea Res. 2002;2(49):1601–1622.
- Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophysical Research Letters. 2005;32(9).
- Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D. et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. 2014;7(1):64–70.
- Wild B., Shakhova N., Dudarev O., Semiletov I. et al. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea. Nature Communications. 2022;13. 5057. doi: 10.1038/s41467-022-32696-0.
- Sapart C. J., Shakhova N., Semiletov I., Jansen J., Szidat S., Kosmach D., Dudarev O., van der Veen C., Egger M., Sergienko V., Salyuk A.,Tumskoy V., Tison J. L., Rockmann T. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences. 2017;14(9): 2283–2292.
- Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015;373(2052). 20140451.
- Shakhova N., Semiletov I., Gustafsson O., Sergienko V., Lobkovsky L., Dudarev O. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications. 2017;8(1). 15872.
- Romankevich E. A. Geochemistry og organic matter in the ocean. Мoscow: Nauka Press; 1977. 256 p. (In Russ.).
- Romankevich E. A., Vetrov A. A. Carbon cycle in the Russian arctic seas. Мoscow: Nauka Press; 2001. 302 p. (In Russ.).
- Romankevich E. A., Vetrov A. A. Carbon in the World Ocean. Мoscow: GEOS; 2021. 352 p. ISBN978-5-89118-835-8. doi: 10.34756/GEOS.2021.16.37857.
- Gramberg I. S. et al. (eds.). Arctic on the threshold of the third millennium. Sankt Petersburg: Nauka Press; 2000. 247 p. (In Russ.).
- Stein R., Macdonald R. W. (eds.). The organic carbon cycle in the Аrctic ocean, Berlin; Heidelberg; New York: Springler-Verlag; 2003. 363 p.
- Bordovsky O. K., Semiletov I. P. Carbon exchange between the bottom water and sediments in the Sea of Okhotsk. Doklady AN SSSR. 1989;306(3):697–700. (In Russ.).
- Pipko I., Semiletov I., Tishchenko P., Pugach S., Christensen J. Carbonate Chemistry dynamics in Bering Strait and the Chukchi Sea. Progress in Oceanography. 2002;55:77–94.
- Pipko I. I., Pugach S. P., Semiletov I. P., Anderson L. G., Shakhova N. E., Gustafsson Ö., Repina I. A., Spivak E. A., Charkin A. N., Salyuk A. N., Shcherbakova K. P., Panova E. V., Dudarev O. V. The dynamics of the carbon dioxide system in the outer shelf and slope of the Eurasian Arctic Ocean. Ocean Sci. 2017;13:997–1016.
- Pipko I. I., Semiletov I. P., Pugach S. P. On the carbonate system of the East Siberian Sea. Doklady Akademii Nauk. 2005;402(3):398–401. (In Russ.).
- Semiletov I. P. Destruction of the coastal permafrost ground as an important factor in biogeochemistry of the Arctic Shelf waters. Trans. (Doklady) Russian Acad. Sci. 1999;368:679–682.
- Semiletov I. P., Makshtas A. P., Akasofu S., Andreas E. Atmospheric balance: The role of Arctic sea ice. Geophysical Research Letters. 2004;1(5). L05121. doi: 10.1029/2003GL017996.
- Bates N. Marine Carbon Cycle Feedbacks. In: Martin Sommerkorn & Susan Joy Hassol (eds.). Arctic Climate Feedbacks: Global Implications, Published by WWF International Arctic Programme August; 2009. P. 55–68. ISBN: 978-2-88085-305-1.
- Semiletov I., Dudarev О., Luchin V., Charkin A., Shin K., Tanaka N. The East-Siberian Sea as a transition zone between the Pacific origin water and local shelf water. Geophysical Research Letters. 2005;32. L10614. doi: 10.1029/2005GL022490.
- Rusanov I. I., Savvichev A. S., Zasko D. N., Sigalevich P. A., Pipko I. I., Pugach S. P., Pimenov N. V., Semiletov I. P. Primary production and microbial heterotrophy in the Siberian arctic seas, Bering Strait, and Gulf of Anadyr, Bering Sea. Estuarine, Coastal and Shelf Science. 2024;299. 108673.
- Semiletov I., Pipko I., Repina I., Shakhova N. Carbonate dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean Pacific sector of the Arctic. Journal of Marine Systems. 2007;66:204–226.
- Semiletov I., Pipko I., Gustafsson Ö., Anderson L. G., Sergienko V., Pugach S., Dudarev O., Charkin A., Gukov A., Bröder L., Andersson A., Spivak E., Shakhova N. Extreme acidification in the East Siberian Arctic Shelf driven by a permafrost-released carbon translocation and seawater freshening. Nature Geoscience. 2016;9:361–365. doi: 10.1038/NGEO2695.
- Pugach S. P., Pipko I. I., Shakhova N. E., Shirshin E. A., Perminova I. V., Gustafsson Ö. et al. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003–2011). Ocean Sci. 2018;14(1):87–103.
- Macdonald R. W., Anderson L. G., Christensen J. P., Miller L. A., Semiletov I. P., Stein R. The Arctic Ocean: budgets and fluxes. In: K.-K. Liu, L. Atkinson, R. Quinones, L. Talaue-McManus (eds.). Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. Springer-Verlag; 2008. P. 291–303.
- Semiletov I. P., Shakhova N. E., Pipko I. I., Pugach S. P., Charkin A. N., Dudarev O. V., Kosmach D. A., Nishino S. Space-time dynamics of carbon stocks and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay of the Laptev Sea. Biogeosciences. 2013;10:5977–5996. doi: 10.5194/bg-10-5977-2013.
- Belzil C., Roesler C. S., Christensen J. P., Shakhova N., Semiletov I. Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption. Estuarine Coastal and Shelf Science. 2006;67:441–449.
- Kaltin S., Anderson L. G. Uptake of atmospheric carbon dioxide in Arctic shelf seas: evaluation of the relative importance of processes that influence in water transported over the Bering-Chukchi Sea shelf. Mar. Chem. 2005;94:67–79.
- Gosink T. A., Pearson J. G., Kelley J. J. Gas movement through sea ice. Nature. 1976;263:41–42.
- Kelley J. J., Gosink T. A. Gases in Sea Ice. Final Report: Contract N000 14-76C-0331, Institute of Marine Science, University of Alaska. Fairbanks, Alaska; 1979. 107 p.
- Semiletov I. P. On seasonal variability of hydrocarbon gases and dissolved oxygen in the Uglovoe Bay, the Japan Sea Proc. Far-Eastern Hydrometeorological Institute. 1987;131:80–84. (In Russ.).
- Alling V., Sanchez-Garcia L., Porcelli D., Pugach S., Vonk J., van Dongen B., Mörth C. M., Anderson L. G., Sokolov A., Andersson P., Humborg C., Semiletov I., Gustafsson Ö. Non-conservative behavior of dissolved organic carbon across the Laptev and East Siberian seas. Global Biogeochemical Cycles. 2010;24. GB4033.
- Vonk J. E., Sánchez-García L., van Dongen B. E., Alling V., Kosmach D., Charkin A., Semiletov I. P., Dudarev O. V., Shakhova N., Roos P., Eglinton T. I., Andersson A., Gustafsson Ö. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature. 2012;489(7414):137–140.
- Semiletov I. P., Pipko I. I., Shakhova N. E., Dudarev O. V., Pugach S. P., Charkin A. N., McRoy C.P., Kosmach D., Gustafsson Ö. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences. 2011;8:2407–2426.
- Guo L., Semiletov I., Gustafsson O., Ingri J., Anderson P., Dudarev O., White D., Characterization of Siberian Arctic coastal sediments: Implications for terrestrial carbon export. Global Biogeochemical Cycles. 2004;18. GB1036. DOI: 10 1029/2003 GBO 02087.
- Vetrov A. A., Semiletov I. P., Dudarev O. V., Peresipkin V. I., Charkin A. N. Study of composition and origin of organic matter in the East-Siberian Sea bottom sediments. Geokhimiya (Geochemistry). 2008;3:183–195. (Translated in English).
- Pipko I. I., Semiletov I. P., Tischenko P. Ya., Pugach S. P., Savelieva N. I. Carbon System Parameters Variability in the East-Siberian Sea Coastal-Shelf Zone during Fall Season. Okeanologiya (Oceanology). 2008;48(1):59–72. (Translated in English).
- Pipko I. I., Semiletov I. P., Pugach S P., Wáhlström I., Anderson L. G. Interannual variability of air-sea fluxes and carbon system in the East Siberian Sea. Biogeosciences. 2011;8:1987–2007. doi: 10.5194/bg-8-1987-2011.
- Anderson L. G., Jutterström S., Hjalmarsson S., Wahlström I., Semiletov I. P. Out-gassing of from Siberian Shelf seas by terrestrial organic matter decomposition. Geophysical Research Letters. 2009;36. L20601. doi: 10.1029/2009GL040046.
- Semiletov I. P., Pipko I. I. Sinks and sources of carbon dioxide in the Arctic Ocean. Transactions of Russian Academy of Sciences. 2007;414(3). (Translated in English by Springer).
- Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf. Journal of Marine Systems. 2007;66(1/4):227–243.
- Savvichev A. S., Rusanov I. I., Pimenov N. V., Zakharova E. E., Veslopolova E. F., Lein A. Y., Crane K., Ivanov M. V. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea. Microbiology. 2007;76:603–613. doi: 10.1134/S0026261707050141.
- Namsaraev B. B., Rusanov I. I., Mitskevich I. N., Veslopolova E. F., Bolshakov A. M., Egorov A. V. Bacterial methane oxidation rates in waters and sediments of the Kara Sea and the Yenisey River estuary. Supplement to: Namsaraev B. B. et al. Bacterial oxidation of methane in the Yenisey River estuary and the Kara Sea. Oceanology. 1995;35(1):80–85. (PANGAEA; 1995).
- Are F. E. The problem of the emission of deep-buried gases to the atmosphere. In: Paepe R., Melnikov V. P., van Overloop E., Gorokhov V. D. (eds.). Permafrost Response on Economic Development, Environmental Security and Natural Resources. Dordrecht, Netherlands: Springer; 2001. P. 497–509.
- Zubov N. N. Sea waters and ice. Leningrad: Gidrometeoizdat; 1938. 454 p. (In Russ.).
- Reeburg W. S. Oceanic methane biogeochemistry. Chem. Rev. 2007;107:486–513.
- Shakhova N. E., Nicolsky D., Semiletov I. P. On the current state of sub-sea permafrost in the East-Siberian Shelf testing of modeling results by observational data. Transactions of Russian Academy of Sciences. 2009;429(5). (Translated in English by Springer).
- Shakhova N. E., Semiletov I. P. Characteristical features of carbon cycle in the shallow shelf of the eastern sector of Russian Arctic. In: N. P. Laverov et al. (eds.). Environmental and Climate Changes and catastrophes. Moscow: A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; 2008. Vol. 4. P. 167–181.
- Steinbach J., Holmstrand H., Scherbakova K., Kosmach D., Bruchrt V., Shakhova N., Salyuk A., Sapart C., Chernikh D., Noormets R., Semiletov I., Gustafsson O. Source Apportionment of Methane Escaping the Subsea Permafrost System in the Outer Eurasian Arctic Shelf. Proceedings National Academy of Sciences (PNAS). 2021;118(10). doi: 10.1073/pnas.2019672118.
- Savelieva N. I., Semiletov I. P., Vasilevskaya L. N., Pugach S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Progress in Oceanography. 2000;47(2/4):279–297.
- Semiletov I. P., Savelieva N. I., Weller G. E., Pipko I. I., Pugach S. P., Gukov A. Yu., Vasilevskaya L. N. The Dispersion of Siberian River Flows into Coastal Waters: Meteorological, Hydrological and Hydrochemical Aspects. In: The Freshwater Budget of the Arctic Ocean, NATO Meeting / NATO ASI Series. Dordrecht: Kluwer Academic Publishers; 2000. P. 323–367.
- Smith L. C., Sheng Y., MacDonald G.M., Hinzman L. D. Disappearing Arctic Lakes. Science. 2005;308(5727):1429.
- Zimov S. A., Semiletov I. P., Daviodov S. P., Voropaev Yu. V., Prosyannikov S. F., Wong C. S., Chan Y.-H. Wintertime emission from soils of Northeastern Siberia. Arctic. 1993;46:197–204.
- Makogon Y. F., Holditch S. A., Makogon T. Y. Natural gas-hydrates – A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering. 2007;56(1):14–31.
- Shakhova N. E., Sergienko V. I., Semiletov I. P. Modern state of the role of the East Siberian Shelf in the methane cycle. Herald of the Russian Academy of Sciences. 2009;79(6):507–518.
- Imaev V. S., Imaeva L. P., Koz’min B. M. Seismotectonics of Yakutia. Moscow: GEOS; 2000. (In Russ.).
- Hope C., Schaefer K. Economic impacts of carbon dioxide and methane released from thawing permafrost. Nature Climate Change. 2015;6:56–59. doi: 10.1038/nclimate2807.
- Whitman G., Hope C., Wadhams P. Climate science: Vast costs of Arctic change. Nature. 2013;449:401–403.
- Natali S. M., Holdren J. P., Rogers B. M., Treharne R., Duffy P. B., Pomerance R. et al. Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences. 2021;118(21). e2100163118.
- Barnard P. E., Moomaw W. R., Fioramonti L., Laurance W. F., Mahmoud M. I., O’Sullivan J., Rapley C. G., Rees W. E., Rhodes C. J., Ripple W. J., Semiletov I. P., Talberth J., Tucker C., Wysham D., Ziervogel G. World Scientists’ Warnings Into Action. Local to Global. Science Progress. 2021;104(4):1–32.
Supplementary files
