Features of performing technological operations using autonomous underwater vehicles equipped with multi-link manipulators
- Authors: Filaretov V.F.1, Zuev A.V.1,2, Timoshenko A.А.2,3
-
Affiliations:
- Institute of Automation and Control Processes, FEB RAS
- Institute of Marine Technology Problems named after Academician M.D. Ageev, FEB RAS
- Far Eastern Federal University
- Issue: No 3 (2024)
- Pages: 165-177
- Section: Robots, mechatronics and robotic systems
- URL: https://freezetech.ru/0869-7698/article/view/676098
- DOI: https://doi.org/10.31857/S0869769824030091
- EDN: https://elibrary.ru/IRZTJH
- ID: 676098
Cite item
Full Text
Abstract
The article describes a new generalized approach to performing underwater contact (technological) operations in fully automatic mode using autonomous underwater vehicles equipped with multi-link manipulators. This approach involves the use of a special hull of the underwater vehicle, ensuring its high mobility and convenient control over all six degrees of freedom, as well as passive vertical stabilization when performing contact operations using a six-degree manipulator. The proposed new method for identifying the added masses and moments of inertia of the liquid attached to the moving links of the manipulator, as well as the coefficients of Coloumb friction, allows us to determine the external moments in the joints of the manipulator, providing an accurate force effect of its working tool on the objects of work. The maintenance of this predetermined effect is provided by a special system for stabilizing the position and orientation of the device at a given point in space, as well as the current thrust of its thrusters, taking into account the current configuration of the manipulator. The proposed methods, as well as devices and systems synthesized on their basis with elements of artificial intelligence, have already been partially tested on land and underwater robotic complexes, which guarantees their successful use in the creation of manipulative autonomous underwater vehicles of a new generation.
Full Text

About the authors
Vladimir F. Filaretov
Institute of Automation and Control Processes, FEB RAS
Email: filaretov@inbox.ru
ORCID iD: 0000-0001-8900-8081
Doctor of Sciences in Technique, Professor, Laboratory Head
Russian Federation, VladivostokAleksandr V. Zuev
Institute of Automation and Control Processes, FEB RAS; Institute of Marine Technology Problems named after Academician M.D. Ageev, FEB RAS
Author for correspondence.
Email: zuev@dvo.ru
ORCID iD: 0000-0002-0934-6222
Doctor of Sciences in Technique, Associate Professor, Leading Researcher
Russian Federation, Vladivostok; VladivostokAleksandr А. Timoshenko
Institute of Marine Technology Problems named after Academician M.D. Ageev, FEB RAS; Far Eastern Federal University
Email: timoshenko.aal@mail.ru
ORCID iD: 0000-0003-1356-9602
Researcher
Russian Federation, Vladivostok; VladivostokReferences
- Christ R. D., Wernli R. L. The ROV Manual. Elsevier, UK; 2013.
- Konoplin A. Yu., Denisov V. A., Dautova T. N., Kuznetsov A. L., Moskovtseva A. V. Tekhnologiya ispol’zovaniya TNPA dlya kompleksnogo issledovaniya glubokovodnykh ehkosistem = [The technology of using ROV for a comprehensive study of deep-sea ecosystems]. Podvodnye Issledovaniya i Robototekhnika. 2019;30(4):4–12. (In Russ.).
- Inzartsev A. V., Kiselev L. V., Kostenko V. V., Matvienko Yu.V., Pavin A. M., Shcherbatyuk A. F. Podvodnye robototekhnicheskie kompleksy: sistemy, tekhnologii, primenenie. = [Underwater robotic complexes: systems, technologies, applications]. Vladivostok: IPMT DVO RAN; 2018. (In Russ.).
- Borovik A. I., Rybakova E. I., Galkin S. V., Mikhailov D. N., Konoplin A. Yu. Opyt ispol’zovaniya avtonomnogo neobitaemogo podvodnogo apparata “MMT-3000” dlya issledovanii bentosnykh soobshchestv Antarktiki = [The experience of using the MMT-3000 autonomous uninhabited underwater vehicle for research of benthic communities in Antarctica]. Okeanologiya. 2022;62(5):811–824. (In Russ.).
- Sahoo A., Dwivedy S. K., Robi P. S. Advancements in the field of autonomous underwater vehicle. Ocean Engineering. 2019;181:145–160.
- Koval E. V. Automatic stabilization system of underwater manipulation robot. Proc. of OCEANS’94 OSATES Conf. Brest, France; 1994. Vol. 1. P. 807–812.
- Ishitsuka M., Ishii K. Development of an underwater manipulator mounted for an AUV. Proc. of OCEANS2005 MTS/IEEE. Washington, USA; 2005. P. 1–6.
- Cieslak P., Ridao P., Giergiel M. Autonomous underwater panel operation by GIRONA500 UVMS: A practical approach to autonomous underwater manipulation. Proc. of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington; 2015. P. 529–536.
- Filaretov V. F., Yukhimets D. A. Osobennosti sinteza vysokotochnykh sistem upravleniya skorostnym dvizheniem i stabilizatsiei podvodnykh apparatov v prostranstve = [Features of the synthesis of high-precision control systems for high-speed movement and stabilization of underwater vehicles in space]. Vladivostok: Dalnauka; 2016. 400 p. (In Russ.).
- Filaretov V., Zuev A., Timoshenko A. A Method for Constructing Adaptive Control Systems for Electric Drives of an Underwater Multi-Link Manipulator. Proc. of the International Russian Automation Conference. Sochi, Russia; 2023. P. 1028–1033.
- Filaretov V. F., Zuev A. V., Gubankov A. S. Upravlenie manipulyatorami pri vypolnenii razlichnykh tekhnologicheskikh operatsii = [Manipulator control when performing various technological operations]. Moscow: Nauka; 2018. (In Russ.).
- Antonelli G. Underwater Robots. Springer International Publishing Switzerland; 2014. 279 p.
- Ribas D., Palomeras N., Ridao P., Carreras M., Mallios A. Girona 500 AUV: From Survey to Intervention. IEEE/ASME Transactions on Mechatronics. 2012;17(1):46–53.
- Ribas D., Ridao P., Turetta A., Melchiorri C., Palli G., Fernández J. J., Sanz P. J. I-AUV Mechatronics Integration for the TRIDENT FP7 Projectl. IEEE/ASME Transactions on Mechatronics. 2015;20(5):2583–2592.
- Yoshikawa T. Force control of robot manipulators. Proc. of the IEEE Int. Conf. on Robotics and Automation. San Francisco; 2000. P. 220–225.
- Gorinevsky D. M., Formalsky A. M., Schneider A. Yu. Upravlenie manipulyatsionnymi sistemami na osnove informatsii ob usiliyakh = [Control of manipulation systems based on information about efforts]. Moscow: Nauka; 1994. 350 p. (In Russ.).
- Barbalata C., Dunnigan M. W., Petillot Y. Position/force operational space control for underwater manipulation. Robotics and Autonomous Systems. 2018;100:150–159.
- Dai P., Lu W., Le K., Liu D. Sliding Mode Impedance Control for contact intervention of an I-AUV: Simulation and experimental validation. Ocean Engineering. 2020;196:106855.
- Filaretov V. F., Yukhimets D. A., Mursalimov E. Sh. Sozdanie universal’noi arkhitektury raspredelennogo programmnogo obespecheniya mekhatronnogo ob”ekta = [Creation of a universal distributed software architecture for a mechatronic object]. Programmnaya Inzheneriya. 2012;(7):14–21. (In Russ.).
- Palomer A., Ridao P., Youakim D., Ribas D., Forest J., Petillot Y. 3D laser scanner for underwater manipulation. Sensors. 2018;18(4):1086.
- Yukhimets D., Popova O. Method of automatic formation of the underwater manipulator motion program based on noise three-dimensional models. Proc. of the International Conference on Ocean Studies. Vladivostok: Russia; 2023. P. 1–6.
- Craig J. J. Introduction to robotics: mechanics and control. Prentice Hall; 2003.
- Zhirabok A. N., Ir K. Ch. Virtual’nye datchiki v zadache funktsional’nogo diagnostirovaniya nelineinykh sistem = [Virtual sensors in the task of functional diagnostics of nonlinear systems]. Izvestiya Rossiiskoi Akademii Nauk. Teoriya i Sistemy Upravleniya. 2022;(1):67–75. (In Russ.).
- Ikonen E., Najim K. Advanced process identification and control. Marsel Dekker Inc.; 2002.
- Fossen T. I. Guidance and control of ocean vehicles. Norway, University of Trondheim. Chichester, England: Printed by John Wiley & Sons; 1994.
Supplementary files
