Deposition of Wear-Resistant Nanocomposite Coatings from Accelerated С60 Ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Hard wear-resistant carbon coatings were deposited from accelerated C60 ions at temperatures of 200 and 300°C. It has been established that the mechanical properties of the coatings are determined by the substrate temperature (Ts) and the energy composition of the beam. The hardness of coatings deposited from C+60 ions with an energy of 7 keV exceeds 50 GPa and is virtually independent of Ts. The presence of C602+ and C603+ with an energy of ~14 and 21 keV, respectively, in the beam leads to a result that is not typical for carbon coatings – the hardness increases by more than 1.3 times with an increase in Ts from 200 to 300°C (from 31.6 GPa to 41.6 GPa). In this case, according to Raman spectroscopy data, the size of graphite nanocrystals in the coating increases with temperature up to almost 2 nm. Coatings obtained under conditions of irradiation with C602+ and C603+ ions are characterized by minimal wear (1.5×10–8 mm3/N∙m, Ts = 200°C) and minimal friction coefficient (µ = 0.05 for Ts = 300°C). We attribute the unusual dependence of hardness on Ts and the improvement in the tribological properties of coatings to the formation of a composite structure based on a diamond-like matrix and graphite nanocrystals in this range of Ts.

Full Text

Restricted Access

About the authors

V. E. Pukha

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS; Hydrogen Energy Center, Ltd. (Sistema JFC PJSC)

Author for correspondence.
Email: pve@icp.ac.ru
Russian Federation, Chernogolovka; Chernogolovka

E. I. Drozdova

Baikov Institute of Metallurgy and Material Science

Email: pve@icp.ac.ru
Russian Federation, Moscow

O. P. Chernogorova

Baikov Institute of Metallurgy and Material Science

Email: pve@icp.ac.ru
Russian Federation, Moscow

I. N. Lukina

Baikov Institute of Metallurgy and Material Science

Email: pve@icp.ac.ru
Russian Federation, Moscow

M. I. Petrzhik

MISIS National University of Science and Technology

Email: pve@icp.ac.ru
Russian Federation, Moscow

A. A. Belmesov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: pve@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Singh H., Ramirez G., Eryilmaz O., Greco A., Doll G., Erdemir A. // Tribology International. 2016. V. 98. P. 172. https://doi.org/10.1016/j.triboint.2016.02.008
  2. Su Y., Cai L., Huang W., Zhang T., Yu W., Zhang P., Hu R. Gong X. // Vacuum. 2022. V. 198. P. 110920. https://doi.org/10.1016/j.vacuum.2022.110920
  3. Mutyala K.C., Singh H., Evans R.D., Doll G.L. // Surf. Coat. Technol. 2015. V. 284. P. 302. https://doi.org/10.1016/j.surfcoat.2015.06.075
  4. Bhat A., Budholiya S., Aravind Raj S., Sultan M.T.H., Hui D., Md Shah A.U., Safri S.N.A. // Nanotechnol. Rev. 2021. V. 10. № 1. P. 237. https://doi.org/10.1515/ntrev-2021-0018
  5. Sánchez-López J.C., Martínez-Martínez D., López-Cartes C., Fernández A. // Surf. Coat. Technol. 2008. V. 202. № 16. P. 4011. https://doi.org/10.1016/j.surfcoat.2008.02.012
  6. Schultrich B. Tetrahedrally Bonded Amorphous Carbon Films I: Basics, Structure and Preparation. Springer, 2018. V. 263.
  7. Shi B., Wu Y., Liu Y., Wang L., Gao J., Hei H., Zheng K.Yu.S. // Mater. Sci. Technol. 2022. V. 38. № 15. P. 1151. https://doi.org/10.1080/02670836.2022.2074124
  8. Charitidis C.A. // Int. J. Refractory Metals Hard Mater. 2010. V. 28. № 1. P. 51. https://doi.org/10.1016/j.ijrmhm.2009.08.003
  9. Zhang L., Wang F., Qiang L., Gao K., Zhang B., Zhang J. // RSC Adv. 2015. V. 5. № 13. P. 9635. https://doi.org/10.1039/C4RA14078H
  10. Liu L., Tang W., Ruan Q., Wu Z., Yang C., Cui S., Ma Z., Fu R.K.Y., Tian X., Wang R., Wu Z., Chu P.K. // Surf. Coat. Technol. 2020. V. 404. P. 126468. https://doi.org/10.1016/j.surfcoat.2020.126468
  11. He D., Shang L., Li W., Cheng B., Zhai H., Zhang X., Lu Z., Zhang, G. // Mater. Design. 2023. V. 226 P. 111640. https://doi.org/10.1016/j.matdes.2023.111640
  12. Santiago J.A., Fernández-Martínez I., Sánchez-López J.C., Rojas T.C., Wennberg A., Bellido-González V., Molina-Aldareguia J.M., Monclús M.A., González-Arrabal R. // Surf. Coat. Technol. 2020. V. 382. P. 124899. https://doi.org/10.1016/j.surfcoat.2019.124899
  13. Murugan V.S., Madhu S. // Silicon. 2022. V. 14. № 11. P. 6053. https://doi.org/10.1007/s12633-021-01375-y
  14. Tyagi A., Walia R.S., Murtaza Q., Pandey S.M., Tyagi P.K., Bajaj B. // Int. J. Refractory Metals Hard Mater. 2019. V. 78. P. 107. https://doi.org/10.1016/j.ijrmhm.2018.09.006
  15. Zhai W., Srikanth N., Kong L.B., Zhou K. // Carbon. 2017. V. 119. P. 150. https://doi.org/10.1016/j.carbon.2017.04.027
  16. Penkov O.V., Pukha V.E., Zubarev E.N., Yoo S.S., Kim D.E. // Tribol. Int. 2013. V. 60. P. 127. https://doi.org/10.1016/j.triboint.2012.11.011
  17. Бельмесов А.А., Нечаев Г.В., Пуха В.Е. Кабачков Е.Н., Ходос И.И., Карасев П.А. // Поверхность. Рентген., синхротр.и нейтрон. исслед. 2022. № 4. C. 3. https://doi.org/10.31857/S1028096022040021
  18. Малеев М.В., Зубарев Е.Н., Пуха В.Е., Дроздов А.Н., Вус А.С. // Металлофизика и новейшие технологии. 2015. Т. 37. № 6. С. 777. http://dspace.nbuv.gov.ua/handle/123456789/112255
  19. Петржик М.И., Левашов Е.А. // Кристаллография. 2007. Т. 52. № 6. С. 1002.
  20. Johnson K.L. Contact Mechanics. Cambridge University Press: Cambridge, 1985.
  21. Хрущов М.М., Бабичев М.А. Исследования изнашивания металлов. М.: Изд-во Акад. наук СССР, 1960. 351 с.
  22. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. № 20. P. 14095. https://doi.org/10.1103/PhysRevB.61.14095
  23. Ferrari A.C. // Surf. Coat. Technol. 2004. V. 180–181. P. 190. https://doi.org/10.1016/j.surfcoat.2003.10.146
  24. Kataria S., Sahoo S., Barve S.A., Dash S., Patil D.S., Tyagi A.K., Arora A.K. // Solid State Commun. 2009. V. 149. Iss. 43–44. P. 1881. https://doi.org/10.1016/j.ssc.2009.08.007
  25. Kolawole F.O., Kolade O.S., Bello S.A., Kolawole S.K., Ayeni A.T., Elijah T.F., Borisade S.G., Tschiptschin A.P. // Int. J. Adv. Manufacturing Technol. 2023. V. 126. № 5-6. P. 2295. https://doi.org/10.1007/s00170-023-11282-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Raman spectra of the coating samples 1-4 (a-d, respectively)

Download (327KB)
3. Fig. 2. Dependence of the sliding friction coefficient of coatings on the number of cycles in tribological tests of specimen 2 (a) and the profile of the friction track after the tests (b)

Download (105KB)
4. Fig. 3. Optical image of the contact spot formed on the surface of the counterbody during the friction test of specimen 2 (a). Deconvolution of the carbon part of the Raman spectrum taken from the friction region of the counterbody (b)

Download (144KB)

Copyright (c) 2024 Russian Academy of Sciences