Complex Diagnostics of Silicon-on-Insulator Layers after Ion Implantation and Annealing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A technology was developed for activating ion-implanted dopants in silicon-on-insulator layers at a low annealing temperature (600°C) using the pre-amorphization technique of a silicon device layer. In the case of phosphorus implantation, silicon was amorphized directly by dopant ions. In the case of boron implantation for pre-amorphization, the layers were preliminary irradiated with argon or fluorine ions. Complex diagnostics of the implanted layers was carried out using secondary ion mass spectrometry, X-ray diffractometry and small-angle X-ray reflectometry. The combination of methods made it possible to characterize the impurity distribution, the degree of silicon crystallinity, the layer thicknesses, and the interface widths in structures. The results of diagnostics of the structure and composition correlate well with calculations in the SRIM software package and the electrophysical characteristics of the layers after annealing. It was shown that the use of argon for pre-amorphization of silicon interfered with the recrystallization process and did not make it possible to achieve acceptable electrical characteristics of the doped layer. Amorphization with phosphorus and pre-amorphization with fluorine during boron implantation allowed obtaining the required values of the resistance of the doped layers after annealing at a temperature of 600°C. The use of a complex approach made it possible to optimize the modes of amorphization, ion doping, and annealing of silicon-on-insulator structures at low temperatures, necessary for the creation of light-emitting device structures based on silicon-germanium nanoislands.

Full Text

Restricted Access

About the authors

P. A. Yunin

Institute for Physics of Microstructures, RAS

Author for correspondence.
Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

M. N. Drozdov

Institute for Physics of Microstructures, RAS

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

A. V. Novikov

Institute for Physics of Microstructures, RAS

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

V. B. Shmagin

Institute for Physics of Microstructures, RAS

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

E. V. Demidov

Institute for Physics of Microstructures, RAS

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

A. N. Mikhailov

N.I. Lobachevsky Nizhny Novgorod State University

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

D. I. Tetelbaum

N.I. Lobachevsky Nizhny Novgorod State University

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

A. I. Belov

N.I. Lobachevsky Nizhny Novgorod State University

Email: yunin@ipmras.ru
Russian Federation, Nizhny Novgorod

References

  1. Зорин Е.И., Павлов П.В., Тетельбаум Д.И. Ионное легирование полупроводников. М.: Энергия, 1975. 129 с.
  2. Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. Vol. 1. Process Technology, 2000.
  3. Hemmet P., Lysenko V.S., Nazarov A.N. Perspective Science and Technologies for Novel Silicon on Insulator Devices. Dordrecht: Springer Science and Business Media, 2012.
  4. Wang Q.-Y., Nie J.-P., Yu F., Liu Z.-L., Yu Y.-H. // Mater. Sci. Engin. B. 2000. V. 72. P. 189. https://doi.org/10.1016/s0921-5107(99)00511-5
  5. Shemukhin A.A., Nazarov A.V., Balakshin Y.V., Chernysh V.S. // Nucl. Instrum. Methods Phys. Res. B. 2015. V. 354. P. 274. https://doi.org/10.1016/j.nimb.2014.11.090
  6. Plummer J.D., Deal M., Griffin P.D. Silicon VLSI Technology: Fundamentals, Practice and Modeling. Pearson, 2000.
  7. Woodard E.M., Manley R.G., Fenger G., Saxer R.L., Hirschman K.D., Dawson-Elli D., Couillard J.G. // 2006 16th Biennial University/Government/Industry Microelectronics Symposium. San Jose, CA, USA, 25–28 June, 2006. P. 161. https://doi.org/10.1109/UGIM.2006.4286374
  8. Heiermann W., Buca D., Trinkaus H., Holländer B., Breuer U., Kernevez N., Ghyselen B., Mantl S. // ECS Trans. 2009. V. 19. P. 95. https://doi.org/10.1149/1.3118935
  9. Wang Y., Liao X., Ma Z., Yue G., Diao H., He J., Kong G., Zhao Y., Li Z., Yun F. // Appl. Surf. Sci. 1998. V. 135. P. 205. https://doi.org/10.1016/s0169-4332(98)00230-x
  10. Смагина Ж.В., Зиновьев В.А., Степихова М.В., Перетокин А.В., Дьяков С.А., Родякина Е.Е., Новиков А.В., Двуреченский А.В. // Физика и техника полупроводников. 2021. Т. 55. Вып. 12. C. 1210. https://doi.org/10.21883/FTP.2021.12.51707.9722
  11. Smagina Z.V., Zinovyev V.A., Zinovieva A.F., Stepikho-va M.V., Peretokin A.V., Rodyakina E.E., Dyakov S.A., Novikov A.V., Dvurechenskii A.V. // J. Luminescence. 2022. V. 249. P. 119033. https://doi.org/10.1016/j.jlumin.2022.119033
  12. Xu X., Usami N., Maruizumi T., Shiraki Y. // J. Cryst. Growth. 2013. V. 378. P. 636. https://doi.org/10.1016/j.jcrysgro.2012.11.002
  13. Miyao M., Yoshihiro N., Tokuyama T., Mitsuishi T. // J. Appl. Phys. 1979. V. 50. P. 223. https://doi.org/10.1063/1.325703
  14. Ebiko Y., Suzuki K., Sasaki N. // IEEE Trans. Electron Devices. 2005. V. 52. P. 429. https://doi.org/10.1109/TED.2005.843870
  15. Шемухин А.А., Назаров А.В., Балакшин Ю.В., Черныш В.С. // Поверхность. Рентген., синхротор. и нейтрон. исслед. 2014. № 3. С. 56. https://doi.org/10.7868/S0207352814030214
  16. Hamilton J.J., Collart E.J.H., Colombeau B., Bersani M., Giubertoni D., Kah M., Cowern N.E.B., Kirkby K.J. // MRS Proc. 2011. V. 912. P. 0912-C01. https://doi.org/10.1557/PROC-0912-C01-10
  17. Sultan A., Banerjee S., List S., Pollack G., Hosack H. // Proc. 11th Int. Conf. on Ion Implantation Technology. Austin, TX, USA, 16–21 June, 1996. P. 25. https://doi.org/10.1109/IIT.1996.586104
  18. Абросимова Н.Д., Юнин П.А., Дроздов М.Н., Оболенский С.В. // Физика и техника полупроводников. 2022. Т. 56. С. 753. https://doi.org/10.21883/FTP.2022.08.53140.26
  19. Юнин П.А., Дроздов Ю.Н., Дроздов М.Н., Королев С.А., Лобанов Д.Н. // Физика и техника полупроводников. 2013. Т. 47. Вып. 12. С. 1580.
  20. Юнин П.А., Дроздов Ю.Н., Новиков А.В., Юрасов Д.В. // Поверхность. рентген., синхротрон. и нейтрон. исслед. 2012. № 6. C. 36.
  21. Юнин П.А., Дроздов Ю.Н., Дроздов М.Н., Новиков А.В., Юрасов Д.В. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2012. № 7. C. 26.
  22. Панкратов Е.Л., Гуськова О.П., Дроздов М.Н., Абросимова Н.Д., Воротынцев В.М. // Физика и техника полупроводников. 2014. Т. 48. Вып. 5. С. 631.
  23. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. P. 1818. https://doi.org/10.1016/j.nimb.2010.02.091
  24. Boberg G., Stolt L., Tove P. A., Norde H. // Phys. Scripta. 1981. V. 24. P. 405. https://doi.org/10.1088/0031-8949/24/2/012
  25. Андреев А.Н., Растегаева М.Г., Растегаев В.П., Решанов С.А. // Физика и техника полупроводников. 1998. Т. 32. С. 832.
  26. Окулич Е.В., Окулич В.И., Тетельбаум Д.И. // Физика и техника полупроводников. 2020. Т. 54. Вып. 8. С. 771.
  27. https://doi.org/10.21883/FTP.2020.08.49649.9338
  28. Revesz P., Wittmer M., Roth J., Mayer J.W. // J. Appl. Phys. 1978. V. 49. P. 5199. https://doi.org/10.1063/1.324415
  29. Cullis A.G., Seidel T.E., Meek R.L. // J. Appl. Phys. 1978. V. 49. P. 5188. https://doi.org/10.1063/1.324414

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The curve of X–ray reflectometry for the initial structure of the CNI: the points are an experiment; the curve is the result of fitting. The inset shows a fragment of the curve, which shows the Kissig oscillations from the upper Si layer. The thickness of the Si instrument layer is 260 nm, the width of the transition layers is 2 nm

Download (97KB)
3. Fig. 2. Calculation results using SRIM (1, 2) and WIMS analysis (3, 4) in the case of phosphorus doping: 1 - phosphorus distribution after implantation (1.5 × 1015/60 + 4 × 1014/15); 2 – nominal distribution of vacancies in the silicon instrument layer caused by irradiation; 3 – distribution phosphorus after implantation; 4 – phosphorus distribution after annealing in mode 2. The dotted line marks the boundary of the Si instrument layer in the CNI structure, the arrow shows the estimated thickness of the remaining crystalline seed layer

Download (91KB)
4. Fig. 3. X–ray diffraction analysis of the CNI structure: a – after phosphorus implantation (1 – experiment, 2 – fitting); b - after annealing in modes 1 (1) and 2 (2). The arrow marks the peak corresponding to the deformed Si layer (tensile deformation)

Download (164KB)
5. Fig. 4. Calculation results using SRIM (1-4) and VIMS (5) in the case of boron doping: 1 – boron distribution after implantation (1.5 × 1015/20 + 4 × 1014 5); 2 – nominal distribution of vacancies in the silicon instrument layer caused by irradiation with argon ions (2 × 1015/100 + 2 × 1015/30); 3 – nominal vacancy distribution after irradiation with argon ions (6 × 1014/70 + 2 × 1014/15); 4 – nominal vacancy distribution after fluorine ion irradiation (3 × 1015/35); 5 – boron distribution after implantation. The dotted line shows the thickness of the Si instrument layer in the structure, the arrow shows the level at which, according to the calculation [26], silicon amorphization occurs

Download (104KB)
6. Fig. 5. X–ray diffraction analysis of the CNI structure: a - after implantation of boron with preamorphization with argon ions (1 – experiment, 2 – fitting); b – after annealing in modes 1 (1) and 2 (2)

Download (152KB)
7. Fig. 6. X–ray diffraction analysis of the CNI structure: a – after implantation of boron with preamorphization with fluorine ions (1 – experiment, 2 – fitting); b - after annealing in modes 1 (1) and 2 (2), the peak of the deformed silicon layer (compression deformation) is marked with an arrow

Download (170KB)

Copyright (c) 2024 Russian Academy of Sciences