Ballistic сonductivity of gold nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of a theoretical study of the electronic structure and electrical conductivity with chirality indices (4, 0), (5, 0), (6, 0), (7, 0), (4, 4), and (5, 5). The simulations were performed using the density functional theory and the method of nonequilibrium Green’s functions. The exchange-correlation functional Perdue-Burke-Ernzerhof and two-exponential basis set were used. We demonstrated the importance of polarized basis sets for the study of electrical properties. Analysis of the results showed that the transmission functions of the studied nanotubes depends on the structure of the SWGNTs in a complex way, but, in general, it increase with increasing diameter. The dependence of the transmission function on the electron energy does not allow us to speak a priori about the linearity of the current–voltage characteristic of gold nanotubes within a certain finite voltage range. In addition to defect-free single-walled gold nanotubes, gold nanotubes of different diameters with a vacancy were also studied. This allowed us to evaluate the effect of such a defect on the atomic structure and electrical conductivity of the single-walled gold nanotubes. It was demonstrated that the conductivity drop can vary within a wide range, correlating with changes in the atomic structure.

About the authors

E. R. Sozykina

South Ural State University

Author for correspondence.
Email: sozykinaer@susu.ru
Russian Federation, Chelyabinsk

S. A. Sozykin

South Ural State University

Email: sozykinaer@susu.ru
Russian Federation, Chelyabinsk

V. P. Beskachko

South Ural State University

Email: sozykinaer@susu.ru
Russian Federation, Chelyabinsk

References

  1. Bachmann M.D., Sharpe A.L., Baker G., Barnard A.W., Putzke C., Scaffidi T., Nandi N., McGuinness P., Zhakina E., Moravec M., Khim S., Köni M., Goldhaber-Gordon D., Bonn D.A., Mackenzie A.P., Moll P. J.W. // Nat. Phys. 2022. V. 18. № 7. P. 819. https://www.doi.org/10.1038/s41567-022-01570-7
  2. Banszerus L., Frohn B., Fabian T., Somanchi S., Epping A., Müller M., Neumaier D., Watanabe K., Taniguchi T., Libisch F., Beschoten B., Hassler F., Stampfer C. // Phys. Rev. Lett. 2020. V. 124. № 17. P. 177701. https://www.doi.org/10.1103/PhysRevLett.124.177701
  3. De Cecco A., Prudkovskiy V.S., Wander D., Rini Ganguly R., Claire Berger C., de Heer W.A., Courtois H., Winkelmann C.B. // Nano Lett. 2020. V. 20. № 5. P. 3786. https://www.doi.org/10.1021/acs.nanolett.0c00838
  4. Kondo Y., Takayanagi K. // Phys. Rev. Lett. 1997. V. 79. P. 3455. https://www.doi.org/10.1103/PhysRevLett.79.3455
  5. Oshima Y., Onga K., Takayanagi A. // Phys. Rev. Lett. 2003. V. 91. P. 205503. https://www.doi.org/10.1103/PhysRevLett.91.205503
  6. Takayanagi K., Kondo Y., Ohnishi H. // JSAP Int. 2001. V. 3. № 3. P. 3.
  7. Landauer R. // Phyl. Mag. 1970. V. 21. № 172. P. 863. https://www.doi.org/10.1080/14786437008238472
  8. Del Valle M., Tejedor C., Cuniberti G. // Phys. Rev. B. 2006. V. 74. P. 045408. https://www.doi.org/10.1103/PhysRevB.74.045408
  9. Manrique D. Zs., Cserti J., Lambert C.J. // Phys. Rev. B. 2010. V. 81. № 7. P. 073103. https://www.doi.org/10.1103/PhysRevB.81.073103
  10. Yang X., Dong J. // Phys. Rev. B. 2005. V. 71. P. 233403. https://www.doi.org/10.1103/PhysRevB.71.233403
  11. Cai Y., Zhou M., Zeng M., Zhang C., Feng Y.P. // Nanotechnology. 2011. V. 22. № 21. P. 215702. https://www.doi.org/10.1088/0957-4484/22/21/215702
  12. Sozykin S.A., Beskachko V.P. // Physica E. 2020. V. 115. P. 113686. https://www.doi.org/10.1016/j.physe.2019.113686
  13. Senger R., Dag, S. Ciraci S. // Phys. Rev. Lett. 2004. V. 93. P. 196807. https://www.doi.org/10.1103/PhysRevLett.93.196807
  14. Дьячков Е.П., Дьячков П.Н. // Журнал неорганической химии. 2021. Т. 66. № 11. С. 1568. https://www.doi.org/10.31857/S0044457X21110040
  15. Краснов Д.О., Кольцова Э.М. // Успехи в химии и химической технологии. 2022. Т. 36. № 11. С. 60.
  16. García A., Papior N.R., Akhtar A., Artacho E., Blum V., Bosoni E., Brandimarte P., Brandbyge M., Cerdá J.I., Corsetti F., Cuadrado R., Dikan V., Ferrer J., Gale J., García-Fernández P., García-Suárez V.M., García S., Huhs G., Illera S., Korytár R., Koval P., Lebedeva I., Lin L., López-Tarifa P., Mayo S.G., Mohr S., Ordejón P., Postnikov A., Pouillon Y., Pruneda M., Robles R., Sánchez-Portal D., Soler J.M., Ullah R., Yu V. Wen-zhe, Junquera J. // J. Chem. Phys.2020. V. 152. № 20. P. 204108. https://www.doi.org/10.1063/5.0005077
  17. Lee J., Kim H.S., Kim Y.H. // AdV. Sci. 2020. V. 7. № 16. P. 2001038. https://www.doi.org/10.1002/advs.202001038
  18. Soler J.M., Artacho E., Gale D.J., García A., Junquera J., Ordejón P., Sánchez-Portal D. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://www.doi.org/10.1088/0953-8984/14/11/302
  19. Isshiki Y., Li D., Kiguchi M., Nishino T., Pauly F., Fujii S. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 9. P. 11919. https://www.doi.org/10.1021/acsami.1c24096
  20. Zhu Y., Chen C., Wu S., Cheng R., Cheng L., Zhou W.-L. // J. Appl. Phys. 2020. V. 128. № 6. P. 064302. https://www.doi.org/10.1063/5.0009406
  21. Abadir G.B., Walus K., Pulfrey D.L. // J. Comput. Electron. 2009. V. 8. № 1. P. 1. https://www.doi.org/10.1007/s10825-009-0263-5
  22. Agrawal S., Srivastava A., Kaushal G. // IOP Conf. Ser. Mater. Sci. Eng. 2022. V. 1221. № 1. P. 012053. https://www.doi.org/10.1088/1757-899X/1221/1/012053
  23. Wang Y., Ma Y., Ni E., Jiang Y., Li H. // Chem. Phys. Chem. 2022. V. 23. № 17. P. e202200177. https://www.doi.org/10.1002/cphc.202200177

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences