Shear bands in amorphous alloys and their role in the formation of nanocrystals

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The processes of evolution of the structure and surface morphology of Al87Ni8La5 and Fe76Si13B11 amorphous alloys under deformation have been studied. It is shown that the deformation occurs through the formation and propagation of shear bands, which form steps when they reach the surface. The formation of nanocrystals in shear bands was noted. It is shown that steps on the surface are formed under the combined action of several elementary shear bands. Shear bands have a variable thickness in the range from 5 to 20 nm. An elementary step has a thickness of about 15 nm. Shear bands can be combined into zones. The transverse size of the zones is about 1 μm. The formation of nanocrystals in zones can lead to anisotropy in the orientational position of nanocrystals in an amorphous matrix. With an increase in the degree of deformation, nanocrystals are formed not only in shear bands, but also in areas adjacent to them. There is a difference in the kinetics of the formation of nanocrystals in an alloy based on aluminum and iron.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Aronin

Institute of Solid State Physics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: aronin@issp.ac.ru
Ресей, 142432, Chernogolovka

N. Volkov

Institute of Solid State Physics, Russian Academy of Sciences

Email: aronin@issp.ac.ru
Ресей, 142432, Chernogolovka

E. Pershina

Institute of Solid State Physics, Russian Academy of Sciences

Email: aronin@issp.ac.ru
Ресей, 142432, Chernogolovka

Әдебиет тізімі

  1. Inoue A., Ochiai T., Horio Y., Masumoto T. // Mater. Sci. Eng. 1994. V. 649. P. 649. https://doi.org/10.1016/0921-5093(94)90286-0
  2. He G., Löser W., Eckert J. // Scripta Mater. 2003. V. 48. P. 1531. https://doi.org/10.1016/S1359-6462(03)00128-3
  3. Louzguine-Luzgin D.V., Seki I., Ketov S.V., Louzguina-Luzgina L.V., Polkin V.I., Chen N., Fecht H., Vasiliev A.N., Kawaji H. // J. Non-Cryst. Solids. 2015. V. 419. P. 12. https://doi.org/10.1016/j.jnoncrysol.2015.03.018
  4. Yoshizawa, Y., Oguma, S., Yamauchi, K. // J. Appl. Phys. 1988. V. 64. P. 6044. https://doi.org/10.1063/1.342149
  5. Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // Rev. Adv. Mater. Sci. 2016. V. 46. P. 53.
  6. Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24 P. 1. https://doi.org/10.1557/jmr.2009.0001
  7. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74 P. 71. https://doi.org/10.1016/j.mser.2013.04.001
  8. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Materialia. 2021. V. 209. P. 116785. doi.org/10.1016/j.actamat.2021.116785
  9. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
  10. Davani F.A., Hilke S., Rösner H., Geissler D., Gebert A., Wilde G. // J. Alloys Compd. V. 2020. V. 837. P. 155494. https://doi.org/10.1016/j.jallcom.2020.155494
  11. Binkowski I., Shrivastav G.P., Horbach J., Divinski S. V., Wilde G. // Acta Materialia. 2016. V. 109. P. 330. https://doi.org/10.1016/j.actamat.2016.02.06 1
  12. Aronin A.S., Louzguine-Luzgin D.V. // Mechanics Mater. 2017. V. 113. P. 19. http://dx.doi.org/10.1016/j.mechmat.2017.07.007
  13. Постнова Е.Ю., Абросимова Г.Е., Аронин А.С. // Поверхность. Рентген., синхротр, и нейтрон. исслед. 2021. № 11. С. 5. https://doi.org/10.31857/S1028096021110169
  14. Aronin A.S., Aksenov O.I., Matveev D.V., Pershina E.A., Abrosimova G.E. // Mater. Lett. 2023. V. 344. P. 134478. https://doi.org/10.1016/j.matlet.2023.134478
  15. Glezer A.M., Louzguine-Luzgin D.V., Khriplivets I.A., Sundeev R.V., Gunderov D.V., Bazlov A.I., Pogoz- hev Y.S. // Mater. Lett. 2019 V. 256. P. 126631. https://doi.org/10.1016/j.matlet.2019.126631
  16. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Cryst. Solids. 2022. V. 577. P. 121279. https://doi.org/10.1016/j.jnoncrysol.2021.121279
  17. Mironchuk B., Abrosimova G., Bozhko S., Drozdenko A., Postnova E., Aronin A. // Mater. Lett. 2020. V. 273. P. 127941. https://doi.org/10.1016/j.matlet.2020.127941
  18. Maaß R., Samver K., Arnold W., Volkert C.F. // Appl. Phys. Lett. 2014. V. 105. P. 171902. https://doi.org/10.1063/1.4936388
  19. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Materialia. 2017. V. 140. P. 206. http://dx.doi.org/10.1016/j.actamat.2017.08.032
  20. Shahabi H.S., Scudino S., Kaban I., Stoica M., Escher B., Menzel S., Vaughan G.B.M., Kühn U., Eckert J. // Acta Materialia. 2016. V. 111. P. 187. http://dx.doi.org/10.1016/j.actamat.2016.03.035
  21. Pan J., Chen Q., Liu L., Li Y. // Acta Materialia. 2011 V. 59. P. 5146. https://doi.org/10.1016/j.actamat.2011.04.047
  22. Schmidt V., Rösner H., Peterlechner M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
  23. Abrosimova G., Aronin A., Budchenko A. // Mater. Lett. 2015. V. 139. P. 194. https://doi.org/10.1016/j.matlet.2014.10.076
  24. Abrosimova G., Aronin A., Fokin D., Orlova N., Postno- va E. // Mater. Lett. 2019. V. 252 P. 114. https://doi.org/10.1016/j.matlet.2019.05.099
  25. Huang Z.H., Li J.F., Rao Q.L., Zhou Y.H. // Mater. Sci. Engineer. A. 2008. V. 489. P. 380. https://doi.org/10.1016/j.msea.2007.12.027
  26. Nunes E., Pereira R.D., Freitas J.C.C., Passamani E.C., Larica C., Fernandes A.A.R., Sanchez F.H. // J. Mater. Sci. 2006. V. 41. P. 1649. https://doi.org/10.1007/s10853-005-4229-0

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Image of the surface of the amorphous alloy Al87Ni8La5 after rolling ((h0–h)/h0 = 0.05).

Жүктеу (429KB)
3. Fig. 2. Images of the shear band with aluminum nanocrystals in the amorphous alloy Al87Ni8La5 after rolling ((h0–h)/h0 = 0.05) obtained by transmission electron microscopy in the light (a) and dark field (b) modes.

Жүктеу (1MB)
4. Fig. 3. An image of the Al87Ni8La5 PS alloy with nanocrystals (indicated by arrows) obtained using high-resolution electron microscopy.

Жүктеу (889KB)
5. Fig. 4. The shear band and nanocrystals in the Al87Ni8La5 alloy after KVD: a – light-field image; b – dark-field image; c – electron diffraction.

Жүктеу (1MB)
6. Fig. 5. An image of the Al87Ni8La5 alloy after KVD (e = 6.5) obtained using high-resolution electron microscopy.

Жүктеу (790KB)
7. Fig. 6. X-ray image of the Al87Ni8La5 alloy after KVD (e = 6.5) in the region of the first diffuse maximum. The following are shown: experimental curve (1); superposition of diffuse reflections from a heterogeneous amorphous phase (curves 2 and 3) and diffraction reflections (curves marked with asterisks); total curve (4).

Жүктеу (123KB)
8. Fig. 7. X-ray of a sample of amorphous Fe76Si13B11 alloy deformed by the CVD method (e = 5.95): the region of the first diffuse maximum and the complete X-ray (in the insert). The black curve is experimental data, the blue one is a curve describing scattering from the amorphous phase.

Жүктеу (185KB)
9. Fig. 8. Image of the Fe76Si13B11 alloy surface after deformation of the CVD (e = 5.95) obtained by scanning electron microscopy.

Жүктеу (329KB)
10. Fig. 9. Image of the Fe76Si13B11 surface after deformation of the KVD (e = 5.95) obtained using atomic force microscopy.

Жүктеу (348KB)
11. Fig. 10. Cross-section profile Fe76Si13B11 after deformation of the KVD (e = 5.95).

Жүктеу (188KB)
12. Fig. 11. The structure of the amorphous Fe76Si13B11 alloy after deformation of the KVD (e = 7.2): a – light–field image; b - dark-field image; c – electron diffraction.

Жүктеу (986KB)

© Russian Academy of Sciences, 2024