The Effect of Thermal Action on the Change in the Chemical Composition of the Surface Layers of a Titanium Alloy, with a Sprayed Carbon Film, after Irradiation with N+ Ions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of thermal exposure under high vacuum conditions on the chemical composition of the surface layers of the VT6 alloy with mixed implantation of N+ ions by a carbon film is investigated. It is shown that under the conditions of thermal exposure, the change in the concentration profiles of the distribution of elements is determined by the processes of chemical interaction, in which the diffusion of carbon and nitrogen into deeper layers does not occur. On the contrary, their concentration decreases and this is due to the formation of volatile compounds CO, CO2 or (CH)2 under thermal exposure. Titanium in the surface analyzed layer is in an oxidized state with various degrees of oxidation. Up to a depth of about 10 nm, the oxidation state of titanium is Ti4+ and Ti3+, and in the transition region of the film/substrate is Ti2+.

Texto integral

Acesso é fechado

Sobre autores

V. Vorobyov

1Udmurt Federal Research Center UB RAS

Autor responsável pela correspondência
Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

P. Bykov

Udmurt Federal Research Center UB RAS

Email: bykovpv@udman.ru
Rússia, Izhevsk

F. Gilmutdinov

Udmurt Federal Research Center UB RAS

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

V. Bayankin

Udmurt Federal Research Center UB RAS

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

I. Pospelova

Udmurt State Agricultural University

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

V. Kobziev

Udmurt State University

Email: Vasily_L.84@udman.ru
Rússia, Izhevsk

Bibliografia

  1. Rajabi A., Ghazali M.J., Daud A.R. // Material. Design. 2015. V. 67. P. 95. https://doi.org/10.1016/j.matdes.2014.10.081
  2. Калита В.И., Комлев Д.И., Прибытков Г.А. и др. // Физика и химия обработки материалов. 2018. № 3. С. 16. https://doi.org/10.30791/0015-3214-2018-4-16-27
  3. Сивков А.А., Герасимов Д.Ю. // Физика и химия обработки материалов. 2017. № 3. С. 33.
  4. Komarov F.F., Konstantinov V.M., Kovalchuk A.V. et al. // Wear. 2016. V. 352. P. 92. https://doi.org/10.1016/j.wear.2016.02.007
  5. Андриевский Р.А. // Успехи химии. 2005. Т. 74. С. 1163.
  6. Hauert R., Patscheilder J. // Advanced Engineering Materials. 2000. V. 2. Iss. 5. P. 247. http://dx.doi.org/10.1002/(SICI)1527-2648(200005) 2:53.0.CO;2-U
  7. Kalin B.A., Volkov N.V., Oleinikov I.V. // Bulletin of the Russian academy of sciences: physics. 2012. V. 76. № 6. P. 690. https://doi.org/10.3103/S1062873812060184
  8. Комаров Ф.Ф. Ионная имплантация в металлы. М.: Энергоатомиздат., 1990. 262 с.
  9. Jie Jin, Yunbo Chen, Kewei Gao, Xiaolin Huang // Applied Surface Science. 2014. V. 305. P. 93 https://doi.org/10.1016/j.apsusc.2014.02.174
  10. Pogrebnjak A., Kobzev A., Gritsenko B.P. et al. // Appl. Phys. 2000. V. 87. № 5. Р. 2142. https://doi.org/10.1063/1.372153
  11. Анищик В.М., Углов В.В. Ионная имплантация в инструментальные стали. Минск: БГУ, 2000. 182 с.
  12. Sharkeev Yu.P., Gritsenko B.P., Fortuna S.V., Perry A.J. // Vacuum. 1999. V. 52. Iss. 3. P. 247. https://doi.org/10.1016/S0042-207X(98)00198-5
  13. Sharkeev Yu.P., Kozlov E.V. // Surface and Coating Technology. 2002. V. 158–159. P. 219. https://doi.org/10.1016/S0257-8972(02)00212-8
  14. Budzynski P. // Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. 2015. V. 342. P. 1. https://doi.org/10.1016/j.nimb.2014.09.004
  15. Овчинников В.В., Макаров Е.В., Гущина Н.В. // Физика металлов и металловедение. 2019. Т. 120. № 12. С. 1307. https://doi.org/10.1134/S001532301912012X
  16. Баянкин В.Я., Новоселов А.А., Гильмутдинов Ф.З. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2014. № 2. С. 93. https://doi.org/10.7868/S0207352814010089
  17. Бахарев О.Г., Погребняк А.Д. // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия: физика твердого тела. 2003. № 1. С. 161. https://elibrary.ru/item.asp?id=9028072
  18. Воробьёв В.Л., Гильмутдинов Ф.З., А.В. Сюгаев, Быков П.В., Баянкин В.Я. // Физика металлов и металловедение. 2020. Т. 121. № 5. С. 509. https://doi.org/10.31857/S0015323020050149
  19. Воробьёв В.Л., Гильмутдинов Ф.З., Быков П.В., Баянкин В.Я., Поспелова И.Г., Русских И.Т. // Рентгеновские, синхротронные и нейтронные исследования. 2019. № 10. С. 102 https://doi.org/10.1134/S0207352819100202
  20. Гуляев А.П. Материаловедение. М.: Металлургия, 1986. 544 с.
  21. Нефёдов В.И. Рентгеноэлектронная спектроскопия химических соединений. Справочник. Москва: Химия, 1984. 256 с. https://srdata.nist.gov/xps/EnergyTypeValSrch.aspx
  22. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Ленинград: Химия, 1977. 376 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Element distribution profiles in the near-surface layers of samples with the initial sputtered film (a), after its ion-beam stirring (b) and after thermal treatment with stirred carbon film (c) with N+ ion implantation

Baixar (434KB)
3. Fig. 2. XRD spectra of C1s sample after stirring and thermal treatment from depths of 5 (a) and 20 (b) nm

Baixar (326KB)
4. Fig. 3. XRD spectra of N1s sample after stirring and thermal treatment from depths of 1 (a) and 40 (b) nm

Baixar (318KB)
5. Fig. 4. Distribution profiles of titanium and carbon after ion-beam mixing (1 - Ti, 2 - C) and after thermal treatment (3 - Ti, 4 - C)

Baixar (164KB)
6. Fig. 5. Nitrogen distribution profiles after ion-beam mixing (1) and after thermal treatment (2)

Baixar (137KB)
7. Fig. 6. Oxygen distribution profiles after ion-beam stirring (1), after thermal exposure of the sample with stirred carbon film (2)

Baixar (137KB)
8. Fig. 7. XRD spectra of Ti2p from near-surface layers of the sample after stirring and heat treatment

Baixar (228KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024