Temperature Effect on the Interlayer Exchange Interaction in a Co/Pd/Co Heterostructure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using Kerr microscopy, the magnetization reversal of the Co(0.4 nm)/Pd(6 nm)/Co(0.4 nm) heterostructure was studied in the temperature range 15–300 K. The temperature dependence of the domain nucleation field in a sample magnetized to saturation was obtained. The nucleation field in both ferromagnetic layers was shown to decrease monotonically with increasing temperature. A region of unstable temperatures of 160–174 K was found, below which the through domains of the new phase nucleated simultaneously in both layers, while in this region domains also nucleated simultaneously in different layers, but in different sites of the sample. The temperature dependence of the effective field HJ of the interlayer exchange interaction was obtained, which increased or decreased the pressure on the domain wall depending on whether this field was added to or subtracted from the external field.

Texto integral

Acesso é fechado

Sobre autores

I. Shashkov

Osipyan Institute of Solid State Physics of the RAS; MIREA – Russian University of Technology

Autor responsável pela correspondência
Email: shav@issp.ac.ru
Rússia, Chernogolovka; Moscow

Yu. Kabanov

Osipyan Institute of Solid State Physics of the RAS

Email: shav@issp.ac.ru
Rússia, Chernogolovka

R. Evstigneev

Osipyan Institute of Solid State Physics of the RAS

Email: shav@issp.ac.ru
Rússia, Chernogolovka

V. Gornakov

Osipyan Institute of Solid State Physics of the RAS

Email: shav@issp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Parkin S., Yang S.H. // Nature Nanotechnol. V. 10. № 3. P. 195. https://doi.org./10.1038/nnano.2015.41
  2. Omelchenko P., Montoya E., Girt E., Heinrich B. // J. Exp. Theor. Phys. 2020. V. 131. № 1. P. 113. https://doi.org./10.1134/S1063776120070080
  3. Lu B., Klemmer T.,Wierman K., Ju G.P., Weller D., Roy A.G., Laughlin D.E., Chang C.H., Ranjan R. // J. Appl. Phys. 2002. V. 91. № 10. P. 8025. https://doi.org./10.1063/1.1452269
  4. Moritz J., Garcia F., Toussaint J.C., Dieny B., Nozières J.P. // Europhys. Lett. 2004. V. 65. № 1. P. 123. https://doi.org./10.1209/epl/i2003-10063-9
  5. Lim W.L., Ebrahim-Zadeh N., Owens J.C., Hentschel H.G.E., Urazhdin S. // Appl. Phys. Lett. 2013. V. 102. P. 162404. https://doi.org./10.1063/1.4802954
  6. Grolier V., Renard D., Bartenlian B., Beauvillain P., Chappert C., Dupas C., Ferré J., Galtier M., Kolb E., Mulloy M., Renard J.P., Veillet P. // Phys. Rev. Lett. 1993. V. 71. P. 3023. https://doi.org./10.1103/PhysRevLett.71.3023
  7. Shull R.D., Iunin Y.L., Kabanov Y.P., Nikitenko V.I, Skryabina O.V., Chien C.L. // J. Appl. Phys. 2013. V. 113. № 17. P. 17C101. https://doi.org./10.1063/1.4793703
  8. Шашков И.В., Горнаков В.С., Кабанов Ю.П. // Поверхность. рентген., синхротр. и нейтрон. исслед. 2021. № 11. С. 80. https://doi.org./10.31857/S1028096021110182
  9. Xie X.P., Zhao X.W., Knepper J.W., Yang F.Y., Sooryakumar R. // Phys. Rev. B. 2007. V. 76. P. 184433. https://doi.org./10.1103/PhysRevB.76.184433
  10. Lemerle S., Ferre J., Chappert C., Mathet V., Giamarchi T., Le Doussal P. // Phys. Rev. Lett. 1998. V. 80. P. 849. https://doi.org./10.1103/PhysRevLett.80.849
  11. Chauve P., Giamarchi T., Le Doussal P. // Phys. Rev. B. 2000. V. 62. P. 6241. https://doi.org./10.1103/PhysRevB.62.6241
  12. Metaxas P.J., Jamet J.P., Mougin A., Cormier M., Ferré J., Baltz V., Rodmacq B., Dieny B., Stamps R.L. // Phys. Rev. Lett. 2007. V. 99. P. 217208. https://doi.org./10.1103/PhysRevLett.99.217208
  13. Jeudy V., Mougin A., Bustingorry S., Savero Torres W., Gorchon J., Kolton A. B., Lemaître A., Jamet J.P. // Phys. Rev. Lett. 2016. V. 117. 057201. https://doi.org./10.1103/PhysRevLett.117.057201
  14. Quinteros C.P., Bustingorry S., Curiale J., Granada M. // Appl. Phys. Lett. 2018. V. 112. P. 262402. https://doi.org./10.1063/1.5026702
  15. Kim D.Y., Park M.H., Park Y.K., Yu J.S., Kim J.S., Kim D.H., Min B.C., Choe S.B. // Appl. Phys. Lett. 2018. V. 112. P. 062406. https://doi.org./10.1063/1.5009726
  16. Gorchon J., Bustingorry S., Ferré J., Jeudy V., Kolton A.B., Giamarchi T. // Phys. Rev. Lett. 2014. V. 113. P. 027205. https://doi.org./10.1103/PhysRevLett.113.027205
  17. Metaxas P.J., Jamet J.P., Ferré J., Rodmacq B., Dieny B., Stamps R.L. // J. Magn. Magn. Mater. 2008. V. 320. № 21. P. 2571. https://doi.org./10.1016/j.jmmm.2008.03.041
  18. Ferré J., Metaxas P.J., Mougin A., Jamet J.P., Gorchon J., Jeudy V. // Compt. Rend. Phys. 2013. V. 14. P. 651. https://doi.org./10.1016/j.crhy.2013.08.001
  19. Shashkov I., Kabanov Y., Tikhomirov O., Gornakov V. // Magnetism. 2022. V. 2. № 2. P. 186. https://doi.org./10.3390/magnetism2020014
  20. Kim J., Kim K.J., Choe S.B., Kim J. // IEEE Trans. Magn. 2009. V. 45. P. 3909. https://doi.org./10.1109/TMAG.2009.2021410
  21. Diaz Pardo R., Savero Torres W., Kolton A.B., Bustingorry S., Jeudy V. // Phys. Rev. B. 2017. V. 95. P. 184434. https://doi.org./10.1103/PhysRevB.95.184434

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Temperature dependence of the nucleation field of domains of a new phase (a): empty circles - domains in the upper layer; asterisks - in the lower layer; full circles - through domains. Examples of domain growth in the layers at a temperature of 174 K in the 270 E field (b-d): arrows indicate the areas of the domain boundary in the lower layer, where they are overtaken by the boundary in the upper layer

Baixar (1MB)
3. Fig. 2. Dependence of the domain boundary velocity in the upper layer on the external field acting along the magnetization in the lower layer (full symbols) and in the opposite direction (empty symbols) (a) at temperature: 297 (triangles); 256 (rhombuses); 230 (circles); 200 K (inverted triangles). Dependence of the logarithm of the domain boundary velocity on the external field acting along the magnetization in the bottom layer (full circles) and in the opposite direction (empty circles) (b). The inset shows the same data for lnv plotted from |H + HJ| - 0.25 with HJ =25 E. The linear fit is represented as a solid line with slope A = -207 E0.25

Baixar (308KB)
4. Fig. 3. Temperature dependence of: a - exchange field; b - slope A. Linear fit: A = 62198T-1 - 98 [E0.25]

Baixar (239KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024