Молекулярно-пучковая эпитаксия InGaN нитевидных нанокристаллов: влияние соотношения потоков элементов III и V групп на структуру и оптические свойства
- Авторы: Гридчин В.О.1,2,3,4, Комаров С.Д.5, Сошников И.П.1,3,4, Штром И.В.1,2,3, Резник Р.Р.1, Крыжановская Н.В.5, Цырлин Г.Э.1,2,3,4
-
Учреждения:
- Санкт-Петербургский государственный университет
- Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алферова РАН
- Институт аналитического приборостроения РАН
- Физико-технический институт им. А.Ф. Иоффе
- Национальный исследовательский университет "Высшая школа экономики"
- Выпуск: № 4 (2024)
- Страницы: 45-50
- Раздел: Статьи
- URL: https://freezetech.ru/1028-0960/article/view/664655
- DOI: https://doi.org/10.31857/S1028096024040052
- EDN: https://elibrary.ru/GJLMRR
- ID: 664655
Цитировать
Аннотация
В настоящей работе впервые исследовано влияние соотношения потоков элементов III и V групп на структурные и оптические характеристики нитевидных нанокристаллов InGaN, выращенных методом молекулярно-пучковой эпитаксии с плазменной активацией азота. Обнаружено, что формирование нитевидных нанокристаллов InGaN со структурой “ядро–оболочка” происходит в том случае, если соотношение потоков элементов III и V групп с учетом коэффициента встраивания In составляет ~0.9–1.2. При этом повышение соотношения потоков элементов III и V групп от промежуточных условий роста к металл-обогащенным приводит к уменьшению содержания In от ~45 до ~35% в нитевидных нанокристаллах. Образцы такого типа демонстрируют фотолюминесценцию при комнатной температуре с максимумом в диапазоне 600–650 нм. Дальнейшее повышение соотношения потоков элементов III и V групп до ~1.3 либо его понижение до ~0.4 приводят к формированию сросшихся наноколончатых слоев с низким содержанием In. Полученные результаты могут представлять интерес для изучения процессов роста нитевидных нанокристаллов InGaN и создания RGB светоизлучающих устройств на их основе.
Полный текст

Об авторах
В. О. Гридчин
Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алферова РАН; Институт аналитического приборостроения РАН; Физико-технический институт им. А.Ф. Иоффе
Автор, ответственный за переписку.
Email: gridchinvo@gmail.com
Россия, 199034, Санкт-Петербург; 194021, Санкт-Петербург; 190103, Санкт-Петербург; 194021, Санкт-Петербург
С. Д. Комаров
Национальный исследовательский университет "Высшая школа экономики"
Email: gridchinvo@gmail.com
Россия, 190008, Санкт-Петербург
И. П. Сошников
Санкт-Петербургский государственный университет; Институт аналитического приборостроения РАН; Физико-технический институт им. А.Ф. Иоффе
Email: gridchinvo@gmail.com
Россия, 199034, Санкт-Петербург; 190103, Санкт-Петербург; 194021, Санкт-Петербург
И. В. Штром
Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алферова РАН; Институт аналитического приборостроения РАН
Email: gridchinvo@gmail.com
Россия, 199034, Санкт-Петербург; 194021, Санкт-Петербург; 190103, Санкт-Петербург
Р. Р. Резник
Санкт-Петербургский государственный университет
Email: gridchinvo@gmail.com
Россия, 199034, Санкт-Петербург
Н. В. Крыжановская
Национальный исследовательский университет "Высшая школа экономики"
Email: gridchinvo@gmail.com
Россия, 190008, Санкт-Петербург
Г. Э. Цырлин
Санкт-Петербургский государственный университет; Санкт-Петербургский национальный исследовательский Академический университет им. Ж.И. Алферова РАН; Институт аналитического приборостроения РАН; Физико-технический институт им. А.Ф. Иоффе
Email: gridchinvo@gmail.com
Россия, 199034, Санкт-Петербург; 194021, Санкт-Петербург; 190103, Санкт-Петербург; 194021, Санкт-Петербург
Список литературы
- Morkoç H. // Handbook of nitride semiconductors and devices, Materials Properties, Physics and Growth. John Wiley & Sons, 2009. P. 1331.
- Karpov S.Y. // MRS Internet J. Nitride Semiconductor Res. 1998. V. 3. № 1. P. 1. https://www.doi.org/10.1557/S1092578300000880
- Ho I., Stringfellow G. // Appl. Phys. Lett. 1996. V. 69. № 18. P. 2701. https://www.doi.org/10.1063/1.117683
- Grandjean N. Are III-nitride semiconductors also suitable for red emission? // Proc. SPIE OPTO. 2023, San Francisco, California, United States. https://www.doi.org/10.1117/12.2661687
- Usman M., Munsif M., Mushtaq U., Anwar A.-R., Muhammad N. // Critical Rev. Solid State Mater. Sci. 2021. V. 46. № 5. P. 450. https://www.doi.org/10.1080/10408436.2020.1819199
- Morassi M., Largeau L., Oehler F., Song H.-G., Travers L., Julien F.H., Harmand J.Ch., Cho Y.-H., Glas F., Tchernycheva M., Gogneau N. // Crystal Growth Design. 2018. V. 18. № 4. P. 2545. https://www.doi.org/10.1021/acs.cgd.8b00150
- Pan X., Song J., Hong H., Luo M., Nötzel R. // Opt. Exp. 2023. V. 31. № 10. P. 15772. https://www.doi.org/10.1364/OE.486519
- Liu X., Sun Yi., Malhotra Y., Pandey A., Wang P., Wu Yu., Sun K., Mi Z. // Photonics Res. 2022. V. 10. № 2. P. 587. https://www.doi.org/10.1364/PRJ.443165
- Dubrovskii V.G., Cirlin G.E., Ustinov V.M. // Semiconductors. 2009. V. 43. № 12. P. 1539. https://www.doi.org/10.1134/S106378260912001X
- Roche E., André Y., Avit G., Bougerol C., Castelluci D., Réveret F., Gil E., Médard F., Leymarie J., Jean T., Dubrovskii V.G., Trassoudaine A. // Nanotechnology. 2018. V. 29. № 46. P. 465602. https://www.doi.org/10.1088/1361-6528/aaddc1
- Kuykendall T., Ulrich P., Yang P. // Nature Materials. 2007. V. 6. № 12. P. 951. https://www.doi.org/10.1038/nmat2037
- Gridchin V.O., Kotlyar K.P., Reznik R.R., Dragunova A.S., Kryzhanovskaya N.V., Lendyashova V.V., Kirilenko D.A., Shevchuk D.S., Cirlin G.E. // Nanotechnology. 2021. V. 32. № 33. P. 335604. https://www.doi.org/10.1088/1361-6528/ac0027
- Kukushkin S.A., Osipov A.V. // Inorg. Mater. 2021. V. 57. №. 13. P. 1319. https://www.doi.org/10.1134/S0020168521130021
- Ivanov S.V., Jmerik V.N., Shubina T.V., Listoshin S.B., Mizerov A.M., Sitnikova A.A., Kim M.-H., Koike M., Kim B.-J., Kop’ev P.S. // J. Crystal Growth. 2007. V. 301. P. 465. https://www.doi.org/10.1016/j.jcrysgro.2006.09.008
- Adelmann C., Langer R., Feuillet G., Daudin A. // Appl. Phys. Lett. 1999. V. 75. № 22. P. 3518. https://www.doi.org/10.1063/1.125374
- Shugabaev T., Gridchin V.O., Komarov S.D., Kirilen- ko D.A., Kryzhanovskaya N.V., Kotlyar K.P., Reznik R.R., Girshova Y.I., Nikolaev V.V., Kaliteevski M.A., Cir- lin G.E. // Nanomaterials. 2023. V. 13. № 6. P. 1069. https://www.doi.org/10.3390/nano13061069
- Gridchin V.O., Reznik R.R., Koltyar K.P., Draguno- va A.S., Kryzhanovskaya N.V., Serov A. Yu., Kukush-kin S.A., Cirlin G.E. // Tech. Phys. Lett. 2021. V. 47. № 21. P. 32. https://www.doi.org/10.21883/TPL.2022.14.52105.18894
- oshnikov I.P., Koltyar K.P., Reznik R.R., Gridchin V.O., Lendyashova V.V., Vershinin A.V., Lysak V.V., Kirilen- ko D.A., Bert N.A., Cirlin G.E. // Semiconductors. 2021. V. 55. № 10. P. 795. https://www.doi.org/10.1134/S1063782621090207
- Orsal G., Gmili E.L., Fressengeas N., Streque J., Djerboub R., Moudakir T., Sundaram S., Ougazzaden A., Salvestrini J.P. // Opt. Mater. Exp. 2014. Vol. 4. № 5. P. 1030. https://www.doi.org/10.1364/OME.4.001030
- Tourbot G., Bougerol C., Grenier A., Den Hertog M., Sam-Giao D., Cooper D., Gilet P., Gayral B., Daudin B. // Nanotechnology. 2011. V. 22. № 7. P. 075601. https://www.doi.org/10.1088/0957-4484/22/7/075601
Дополнительные файлы
