Layered composite material of niobium–ceramic
- 作者: Kamynina O.K.1, Vadchenko S.G.2, Kovalev I.D.2, Prokhorov D.V.1, Andreev D.E.2, Nekrasov A.N.3
-
隶属关系:
- Osipyan Institute of Solid State Physics RAS
- Merzhanov Institute of Structural Macrokinetics and Materials Science RAS
- Institute of Experimental Mineralogy RAS
- 期: 编号 4 (2024)
- 页面: 81-89
- 栏目: Articles
- URL: https://freezetech.ru/1028-0960/article/view/664661
- DOI: https://doi.org/10.31857/S1028096024040113
- EDN: https://elibrary.ru/GILHPM
- ID: 664661
如何引用文章
详细
Layered composite materials based on niobium and cermet were produced via self-propagating high-temperature synthesis of pre-structured samples using metal foils (Ti, Nb, Ta, Ni) and reaction tapes (Ti + 1.7B) and (5Ti + 3Si). Reaction tapes for synthesis were produced by rolling process of powder mixtures. The microstructure, elemental and phase compositions of the synthesized multilayer composite materials were studied by scanning electron microscopy and X-ray phase analysis. Particular attention was paid to the formation of intermediate layers and surface modification occurring during combustion. The strength characteristics of synthesized materials were determined according to the three-point loading scheme at temperatures of 1100°C. The analysis of obtained materials showed that joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation and chemical reactions occurring in the reaction tapes and on the surface of metal foils. The formation of thin intermediate layers in the form of cermet and eutectic solutions provides the synthesized multilayer materials with good strength properties up to 87 MPa at 1100°C. These results are of interest for the development of structural materials operating under extreme conditions.
全文:

作者简介
O. Kamynina
Osipyan Institute of Solid State Physics RAS
编辑信件的主要联系方式.
Email: kamynolya@gmail.com
俄罗斯联邦, 142432, Chernogolovka
S. Vadchenko
Merzhanov Institute of Structural Macrokinetics and Materials Science RAS
Email: kamynolya@gmail.com
俄罗斯联邦, 142432, Chernogolovka
I. Kovalev
Merzhanov Institute of Structural Macrokinetics and Materials Science RAS
Email: kamynolya@gmail.com
俄罗斯联邦, 142432, Chernogolovka
D. Prokhorov
Osipyan Institute of Solid State Physics RAS
Email: kamynolya@gmail.com
俄罗斯联邦, 142432, Chernogolovka
D. Andreev
Merzhanov Institute of Structural Macrokinetics and Materials Science RAS
Email: kamynolya@gmail.com
俄罗斯联邦, 142432, Chernogolovka
A. Nekrasov
Institute of Experimental Mineralogy RAS
Email: kamynolya@gmail.com
俄罗斯联邦, 142432, Chernogolovka
参考
- Zhao J.C., Westbrook J.H. // MRS Bull. 2003. V. 28. P. 622. https://doi.org/10.1557/mrs2003.189
- Kong B., Jia L., Zhang H., Sha J., Shi S., Guan K. // Int. J. Refractory Metals Hard Mater. 2016. V. 58. P. 84. https://doi.org/10.1016/j.ijrmhm.2016.04.004
- Pierre C., Tasadduq Kh. // Aerospace Sci. Technol. 1999. V. 3. № 8. P. 513. https://doi.org/10.1016/S1270-9638(99)00108-X
- Kiiko V.M., Korzhov V.P., Kurlov V.N., Khvostunkov K.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P. 1126. https://www.doi.org/10.1134/S1027451020060075
- Tsakiropoulos P. // Prog. Mater. Sci. 2022. V. 123. P. 100714. https://www.doi.org/10.1016/j.pmatsci.2020.100714
- Deardo A.J. // Int. Mater. Rev. 2003. V. 48. № 6. P. 371. https://doi.org/10.1179/095066003225008833
- Zheng X., Bai R., Cai X., Bai R., Xia M.,Wang F., Liu H., Wang H. // Mater. China. 2014. V. 33. № 9. P. 586. https://www.doi.org/10.7502/j.issn.1674-3962.2014.09.07
- Le V.T., Ha N.S., Goo N.S. // Composites B. 2021. V. 226. P. 109301. https://doi.org/10.1016/j.compositesb.2021.109301
- Saurabh A., Meghana Ch.M., Singh P.K., Verma P.Ch. // Materials Today: Proc. 2022. V. 56. P. 412. https://doi.org/10.1016/j.matpr.2022.01.268
- Wang J.C., Liu Y.J., Qin P, Liang S.X., Sercombe T.B., Zhang L.C. // Mater. Sci. Engineering A. 2019. V. 760. P. 214. https://doi.org/10.1016/j.msea.2019.06.001
- Gramberg U., Renner M., Diekmann H. // Mater. Corrosion. 1995. V. 46. № 12. P. 689. https://doi.org/10.1002/maco.19950461206
- Li Sh., Xiao L., Liu S., Zhang Y., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
- Cai X., Wang D., Wang Y., Yang Zh. // J. Manufacturing Processes. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057
- Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
- Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
- Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferr. Met. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
- Ye Y., Mu D. // // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018
- Pei X.-J., Huang J.-H., Zhang J.-G., Wei Sh., Lin G.-B., Liu H.-Y. // Mater. Lett. 2006. V. 60. P. 2240. https://www.doi.org/10.1016/j.matlet.2005.12.138
- Reyes D., Malard V., Drawin S., Couret A., Moncho- ux J.-P. // Intermetallics. 2022. V. 144. P. 107509. https://www.doi.org/10.1016/j.intermet.2022.107509
- Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
- Marchenko E., Yasenchuk Yu., Baigonakova G., Gun-ther S., Yuzhakov M., Zenkin S., Potekaev A., Dubovi-kov K. // Surf. Coat. Technol. 2020. V. 388. P. 125543. https://doi.org/10.1016/j.surfcoat.2020.125543
- Vorotilo S., Potanin A.Y., Iatsyuk I.V., Levashov E.A. // Adv. Eng. Mater. 2018. V. 20. P. 1800200. https://doi.org/10.1002/adem.201800200
- Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
- Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combust. Explos. Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
- Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Materials Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
- Dohmen R., Marschall H.R., Ludwig Th., Polednia J. // Phys. Chem. Minerals. 2019. V. 46. P. 311. https://doi.org/10.1007/s00269-018-1005-7
- Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
- Ansel D., Thibon I., Boliveau M., Debuigne J. // Acta Materialia. 1998. V. 46. № 2. P. 423. https://doi.org/10.1016/S1359-6454(97)00272-3
- Liu Y., Li K., Wu H., Song M., Wang W., Li N., Tang H. // J. Mechanical Behavior Biomed. Mater. 2015. V. 51. P. 302. https://doi.org/10.1016/j.jmbbm.2015.07.004
- Krishan R., Garg S.P., Krishnamurthy N., Paul E. // Phase Diagrams of Binary Tantalum Alloys. Indian Institute of Metals, Calcutta, India, 1996. P. 118.
- Zhang Y., Zhou J.P., Sun D.Q., Li H.M. // J. Mater. Res. Technol. 2020. V. 9. № 2. P. 1780. https://doi.org/10.1016/j.jmrt.2019.12.009
- Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813. https://doi.org/10.3390/coatings10090813
- Ioannis P., Claire U., Panos 0T. // Sci Technol Adv Mater. 2017. V. 18. № 1. P. 467. https://www.doi.org/10.1080/14686996.2017.1341802
- Yang Y., Mu D. // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018
补充文件
