Слоистый композиционный материал ниобий–металлокерамика

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Слоистые композиционные материалы на основе ниобия и металлокерамики получены методом самораспространяющегося высокотемпературного синтеза из предварительно структурированных образцов с использованием металлических фольг (Ti, Nb, Ta, Ni) и реакционных лент (Ti + 1.7B) и (5Ti + 3Si). Реакционные ленты для синтеза изготавливали прокаткой из порошковых смесей. Морфология, элементный и фазовый составы синтезированных многослойных композиционных материалов были изучены методами растровой электронной микроскопии и рентгенофазового анализа. Отдельное внимание было уделено формированию промежуточных слоев и модификации поверхности, происходящих в процессе горения. Прочностные характеристики синтезированных материалов определяли по схеме трехточечного нагружения при температуре 1100°С. Анализ полученных материалов показал, что соединение в режиме горения металлических фольг и реакционных лент, обеспечивается за счет реакционной диффузии, взаимной пропитки и химических реакций, протекающих в реакционных лентах и на поверхности металлических фольг. Формирование тонких промежуточных слоев в виде металлокерамики и эвтектических растворов обеспечивает синтезированным многослойным материалам хорошие прочностные свойства до 87 МПа при 1100°С. Данные результаты представляют интерес для разработки конструкционных материалов, работающих в экстремальных условиях.

Полный текст

Доступ закрыт

Об авторах

О. К. Камынина

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Автор, ответственный за переписку.
Email: kamynolya@gmail.com
Россия, 142432, Черноголовка

С. Г. Вадченко

Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН

Email: kamynolya@gmail.com
Россия, 142432, Черноголовка

И. Д. Ковалев

Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН

Email: kamynolya@gmail.com
Россия, 142432, Черноголовка

Д. В. Прохоров

Институт физики твердого тела им. Ю.А. Осипьяна РАН

Email: kamynolya@gmail.com
Россия, 142432, Черноголовка

Д. Е. Андреев

Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова РАН

Email: kamynolya@gmail.com
Россия, 142432, Черноголовка

А. Н. Некрасов

Институт экспериментальной минералогии им. акад. Д.С. Коржинского РАН

Email: kamynolya@gmail.com
Россия, 142432, Черноголовка

Список литературы

  1. Zhao J.C., Westbrook J.H. // MRS Bull. 2003. V. 28. P. 622. https://doi.org/10.1557/mrs2003.189
  2. Kong B., Jia L., Zhang H., Sha J., Shi S., Guan K. // Int. J. Refractory Metals Hard Mater. 2016. V. 58. P. 84. https://doi.org/10.1016/j.ijrmhm.2016.04.004
  3. Pierre C., Tasadduq Kh. // Aerospace Sci. Technol. 1999. V. 3. № 8. P. 513. https://doi.org/10.1016/S1270-9638(99)00108-X
  4. Kiiko V.M., Korzhov V.P., Kurlov V.N., Khvostunkov K.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. № 6. P. 1126. https://www.doi.org/10.1134/S1027451020060075
  5. Tsakiropoulos P. // Prog. Mater. Sci. 2022. V. 123. P. 100714. https://www.doi.org/10.1016/j.pmatsci.2020.100714
  6. Deardo A.J. // Int. Mater. Rev. 2003. V. 48. № 6. P. 371. https://doi.org/10.1179/095066003225008833
  7. Zheng X., Bai R., Cai X., Bai R., Xia M.,Wang F., Liu H., Wang H. // Mater. China. 2014. V. 33. № 9. P. 586. https://www.doi.org/10.7502/j.issn.1674-3962.2014.09.07
  8. Le V.T., Ha N.S., Goo N.S. // Composites B. 2021. V. 226. P. 109301. https://doi.org/10.1016/j.compositesb.2021.109301
  9. Saurabh A., Meghana Ch.M., Singh P.K., Verma P.Ch. // Materials Today: Proc. 2022. V. 56. P. 412. https://doi.org/10.1016/j.matpr.2022.01.268
  10. Wang J.C., Liu Y.J., Qin P, Liang S.X., Sercombe T.B., Zhang L.C. // Mater. Sci. Engineering A. 2019. V. 760. P. 214. https://doi.org/10.1016/j.msea.2019.06.001
  11. Gramberg U., Renner M., Diekmann H. // Mater. Corrosion. 1995. V. 46. № 12. P. 689. https://doi.org/10.1002/maco.19950461206
  12. Li Sh., Xiao L., Liu S., Zhang Y., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  13. Cai X., Wang D., Wang Y., Yang Zh. // J. Manufacturing Processes. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057
  14. Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
  15. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
  16. Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferr. Met. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
  17. Ye Y., Mu D. // // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018
  18. Pei X.-J., Huang J.-H., Zhang J.-G., Wei Sh., Lin G.-B., Liu H.-Y. // Mater. Lett. 2006. V. 60. P. 2240. https://www.doi.org/10.1016/j.matlet.2005.12.138
  19. Reyes D., Malard V., Drawin S., Couret A., Moncho- ux J.-P. // Intermetallics. 2022. V. 144. P. 107509. https://www.doi.org/10.1016/j.intermet.2022.107509
  20. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
  21. Marchenko E., Yasenchuk Yu., Baigonakova G., Gun-ther S., Yuzhakov M., Zenkin S., Potekaev A., Dubovi-kov K. // Surf. Coat. Technol. 2020. V. 388. P. 125543. https://doi.org/10.1016/j.surfcoat.2020.125543
  22. Vorotilo S., Potanin A.Y., Iatsyuk I.V., Levashov E.A. // Adv. Eng. Mater. 2018. V. 20. P. 1800200. https://doi.org/10.1002/adem.201800200
  23. Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
  24. Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combust. Explos. Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
  25. Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Materials Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
  26. Dohmen R., Marschall H.R., Ludwig Th., Polednia J. // Phys. Chem. Minerals. 2019. V. 46. P. 311. https://doi.org/10.1007/s00269-018-1005-7
  27. Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  28. Ansel D., Thibon I., Boliveau M., Debuigne J. // Acta Materialia. 1998. V. 46. № 2. P. 423. https://doi.org/10.1016/S1359-6454(97)00272-3
  29. Liu Y., Li K., Wu H., Song M., Wang W., Li N., Tang H. // J. Mechanical Behavior Biomed. Mater. 2015. V. 51. P. 302. https://doi.org/10.1016/j.jmbbm.2015.07.004
  30. Krishan R., Garg S.P., Krishnamurthy N., Paul E. // Phase Diagrams of Binary Tantalum Alloys. Indian Institute of Metals, Calcutta, India, 1996. P. 118.
  31. Zhang Y., Zhou J.P., Sun D.Q., Li H.M. // J. Mater. Res. Technol. 2020. V. 9. № 2. P. 1780. https://doi.org/10.1016/j.jmrt.2019.12.009
  32. Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813. https://doi.org/10.3390/coatings10090813
  33. Ioannis P., Claire U., Panos 0T. // Sci Technol Adv Mater. 2017. V. 18. № 1. P. 467. https://www.doi.org/10.1080/14686996.2017.1341802
  34. Yang Y., Mu D. // J. Europ. Ceram. Soc. 2014. V. 34. № 10. P. 2177. https://doi.org/10.1016/j.jeurceramsoc.2014.02.018

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Исходный образец, структурированный из фольг тугоплавких металлов и реакционных лент.

Скачать (122KB)
3. Рис. 2. Карта распределения элементов синтезированного образца.

Скачать (262KB)
4. Рис. 3. Дифрактограмма синтезированного образца.

Скачать (117KB)
5. Рис. 4. Морфология области образца, соответствующей слоям L1–L9 (табл. 2).

Скачать (288KB)
6. Рис. 5. Морфология области образца, соответствующей слоям L9–L17 (табл. 2).

Скачать (352KB)
7. Рис. 6. Диаграмма разрушения при 1100°С (а) и морфология образца после испытаний на трехточечный изгиб (б).

Скачать (137KB)

© Российская академия наук, 2024