Structure and magnetic properties of multilayer nanosystems based on thin films of cobalt and chromium-group metals deposited by magnetron method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In film nanostructures based on cobalt and buffer layers of chromium group metals formed by magnetron sputtering, features of the conductivity of buffer layers of various thicknesses and the magneto-optical response of cobalt films on tungsten were revealed. Analysis of electron microscopy data, X-ray phase analysis, and magneto-optical measurements indicates the specific structure and properties of tungsten films, the resistance of which depends on their thickness and is determined by the charge transfer between the crystallites. There is no magnetic anisotropy in nanostructures based on tungsten/cobalt layers.

作者简介

А. Prokaznikov

NRC Kurchatov Institute

编辑信件的主要联系方式.
Email: prokaznikov@mail.ru

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

俄罗斯联邦, Yaroslavl

V. Paporkov

Demidov Yaroslavl State University

Email: pva@uniyar.ac.ru
俄罗斯联邦, Yaroslavl

R. Selyukov

NRC Kurchatov Institute

Email: prokaznikov@mail.ru

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

俄罗斯联邦, Yaroslavl

S. Vasilev

NRC Kurchatov Institute

Email: prokaznikov@mail.ru

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

俄罗斯联邦, Yaroslavl

О. Savenko

Demidov Yaroslavl State University

Email: prokaznikov@mail.ru
俄罗斯联邦, Yaroslavl

参考

  1. Merlo A., Leonard G. // Materials. 2021. V. 14. № 14. P. 3823. https://doi.org/10.3390/ma14143823
  2. Селюков Р.В., Изюмов М.О., Наумов В.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 8. С. 26. https://doi.org/10.31857/S1028096020080142
  3. Селюков Р.В., Наумов В.В., Изюмов М.О., Васильев С.В., Мазалецкий Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 9. https://doi.org/10.31857/S1028096023020097
  4. Аверкиев И.К., Колотов А.А., Бакиева О.Р. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. С. 46. https://doi.org/10.31857/S1028096023030020
  5. Vüllers F.T.N., Spolenak R. // Thin Solid Films. 2015. V. 577. P. 26. https://doi.org/10.1016/j.tsf.2015.01.030
  6. Wang S.X., Taratorin A.M. Magnetic Information Storage Technology. London: Academic Press, 1999.
  7. Rotenberg E., Freelon B.K., Koh H., Bostwick A., Rossnagel K., Schmid A., Kevan S.D. // New J. Phys. 2005. V. 7. № 1. P. 114. https://doi.org/10.1088/1367-2630/7/1/114
  8. Abdelhameed A.H., Angloher G., Bauer P., Bento A., Bertoldo E.,·Canonica L., Fuchs D., Hauff D., et al. // J. Low Temp. Phys. 2020. V. 199. P. 407. https://doi.org/10.1007/s10909-020-02357-x
  9. Blundell S. Magnetism in Condensed Matter. Oxford, NY: Oxford University Press Inc, 2001.
  10. Mattheiss L.F. // Phys. Rev. 1965. V. 139. № 6A. P. A1893. https://doi.org/10.1103/PhysRev.139.A1893
  11. Булаевский Л.Н. // УФН. 1976. Т. 120. № 2. С. 259. https://doi.org/10.3367/UFNr.0120.197610c.0259
  12. Bouziane K., Mamor M., Meyer F. // Appl. Phys. A. 2005. V. 81. № 1. P. 209. https://doi.org/10.1007/s00339-004-2558-5
  13. Enss C. Cryogenic Particle Detection. Berlin–Heidelberg–NY: Springer, 2005.
  14. Buchin E.Yu., Vaganova E.I., Naumov V.V., Paporkov V.A., Prokaznikov A.V. // Tech. Phys. Lett. 2009. V. 35. № 7. P. 589. https://doi.org/10.1134/S1063785009070025
  15. Nagakubo A., Lee H.T., Ogi H., Moruyama T., Ono T. // Appl. Phys. Lett. 2020. V. 116. P. 021901. https://doi.org/10.1063/1.5131768
  16. Poulopoulos P., Grammatikopoulos S., Trachylis D., Bissas G., Dragatsikas I., Velgakis M.J., Politis C. // J. Surf. Interfaces Mater. 2015. V. 3. № 1. P. 52. https://doi.org/10.1166/jsim.2015.1077
  17. Miller A.M., Lemon M., Choffel M.A., Rich S.R., Harvel F., Johnson D.C. // Z. Naturforsch. B. 2022. V. 77. № 4–5. P. 313. https://doi.org/10.1515/znb-2022-0020
  18. Basaviah S., Pollak S. R. // J. Appl. Phys. 1968. V. 39. № 12. P. 5548. https://doi.org/10.1063/1.1656012
  19. Morcom W.R., Worrell W.L., Sell H. G., Kaplan H. I. // Metall. Trans. 1974. V. 5. P. 155. https://doi.org/10.1007/BF02642939
  20. Frank F.C., Kasper J.S. // Acta Crystallogr. 1959. V. 12. P. 483. https://doi.org/10.1107/S0365110X59001499
  21. Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1999.
  22. Li W., Fenton J.C., Wang Y., McComb D. W., Warburton P.A. // J. Appl. Phys. 2008. V. 104. № 9. P. 093913. https://doi.org/10.1063/1.3013444
  23. Nix W.D., Clemens B.M. // J. Mater. Res. 1999. V. 14. № 8. P. 4367. https://doi.org/10.1557/JMR.1999.0468
  24. Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках. М.: Наука, 1984. 350 с.
  25. Selyukov R.V., Amirov I.I., Naumov V.V. // Russ. Microelectronics. 2022. V. 51. № 6. P. 488. https://doi.org/10.1134/S1063739722700081
  26. Lita E., Rosenberg D., Nam S., Miller A.J., Balzar D., Kaatz L. M., Schwall R. E. // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. P. 3528. https://doi.org/10.1109/TASC.2005.849033
  27. Fuchs K. // Math. Proc. Cambridge Phil. Soc. 1938. V. 34. № 1. P. 100. https://doi.org/10.1017/S0305004100019952
  28. Абрикосов А.А. Основы теории металлов. М.: Наука, 1987. 520 с.
  29. Boiko V.V., Gantmacher V.F., Gasparov V.A. // Sov. Phys. JETP. 1974. V. 38. № 3. P. 604.
  30. Desai P.D., Chu T.K., James H.M., Ho C.Y. // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1094. https://doi.org/10.1063/1.555723
  31. Lee J.-S., Cho J., You C.-Y. // J. Vac. Sci. Technol. A. 2016. V. 34. № 2. P. 021502. https://doi.org/10.1116/1.4936261
  32. Mayadas A.F., Shatzkes M. // Phys. Rev. 1970. V. 1. № 4. P. 1382. https://doi.org/10.1103/PhysRevB.1.1382

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024