Influence of surface modification with ceria on transport properties of heterogeneous anion exchange MА-41 membranes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Heterogeneous anion-exchange MA-41 membranes were surface modified with cerium oxide, incl. that with a surface functionalized with phosphoric acid groups. Composite membranes were characterized by SEM, TGA, IR spectroscopy, and voltammetry; their conductivity in various ionic forms, anion transfer numbers, and selectivity coefficients for the separation of singly and doubly charged anions during electrodialysis desalination were determined. The modifying layer of cerium oxide practically does not change conductivity of the composite membranes, but increases their monovalent selectivity. E.g., the P(Cl /SO42–) selectivity of the modified MA-41 membrane increases from 0.82 to 1.01, and the P(NO3 /SO42–) selectivity – from 1.38 to 1.60.

Texto integral

Acesso é fechado

Sobre autores

P. Yurova

Institute of General and Inorganic Chemistry named after N.S. Kurnakov RAS

Autor responsável pela correspondência
Email: polina31415@mail.ru
Rússia, Moscow, 119991

I. Stenina

Institute of General and Inorganic Chemistry named after N.S. Kurnakov RAS

Email: polina31415@mail.ru
Rússia, Moscow, 119991

A. Manin

Institute of General and Inorganic Chemistry named after N.S. Kurnakov RAS

Email: polina31415@mail.ru
Rússia, Moscow, 119991

D. Golubenko

Institute of General and Inorganic Chemistry named after N.S. Kurnakov RAS

Email: polina31415@mail.ru
Rússia, Moscow, 119991

A. Yaroslavtsev

Institute of General and Inorganic Chemistry named after N.S. Kurnakov RAS

Email: polina31415@mail.ru
Rússia, Moscow, 119991

Bibliografia

  1. Khan M.I., Mondal A.N., Tong B., Jiang C., Emmanuel K., Yang Z., Wu L., Xu T. // Desalination. 2016. V. 391. P. 61.
  2. Goh P.S., Wong K.C., Ismail A.F. // Desalination. 2022. V. 521. P. 115377.
  3. Frioui S., Oumeddour R., Lacour S. // Sep. Purif. Technol. 2017. V. 174. P. 264.
  4. Mir N., Bicer Y. // J. Environ. Manag. 2021. V. 289. P. 112496.
  5. Luo T., Abdu S., Wessling M. // J. Memb. Sci. 2018. V. 555. P. 429.
  6. Mends E.A., Chu P. // J. Environ. Chem. Eng. 2023. V. 11. P. 110710.
  7. Shahrim N.A., Abounahia N.M., El-Sayed A.M.A., Saleem H., Zaidi S.J. // J. Water Process Eng. 2023. V. 51. P. 103479.
  8. Golubenko D.V., Pourcelly G., Yaroslavtsev A.B. // Separation and Purification Technology. 2018. V. 207. P. 329
  9. Russell S.T., Pereira R., Vardner J.T., Jones G.N., Dimarco C., West A.C., Kumar S.K. // Macromolecules. 2020. V. 53. P. 1014.
  10. Liu H., She Q. // J. Memb. Sci. 2022. V. 650. P. 120398.
  11. Singh A.K., Kumar S., Bhushan M., Shahi V. K. // Sep. Purif. Technol. 2020. V. 234. P. 116078.
  12. Reig M., Farrokhzad H., Van der Bruggen B., Gibert O., Cortina J.L. // Desalination. 2015. V. 375. P. 1.
  13. Zhang Y., Wang L., Sun W., Hu Y., Tang H. // J. Ind. Eng. Chem. 2020. V. 81. P. 7.
  14. Roghmans F., Evdochenko E., Martí-Calatayud M.C., Garthe M., Tiwari R., Walther A., Wessling M. // J. Memb. Sci. 2020. V. 600. P. 117854.
  15. Pang X., Tao Y., Xu Y., Pan J., Shen J., Gao C. // J. Memb. Sci. 2020. V. 595. P. 117544.
  16. Lee S., Meng W., Wang Y., Wang D., Zhang M., Wang G., Cheng J., Zhou Y., Qu W. // Ain Shams Eng. J. 2021. V. 12. P. 159.
  17. Thakur A.K., Malmali M. // J. Environ. Chem. Eng. 2022. V. 10. P. 108295.
  18. Akberova E.M., Vasil’eva V.I., Zabolotsky V.I., Novak L. // Membranes. 2019. V. 9. P. 169.
  19. Kononenko N., Nikonenko V., Grande D., Larchet C., Dammak L., Fomenko M., Volfkovich Y. // Adv. Colloid Interface Sci. 2017. V. 246. P. 196.
  20. Güler E., van Baak W., Saakes M., Nijmeijer K. // J. Memb. Sci. 2014. V. 455. P. 254.
  21. Wang C., Pan N., Liao J., Ruan H., Sotto A., Shen J. // ACS Appl. Polym. Mater. 2021. V.3. P. 342.
  22. Manin A., Golubenko D., Novikova S., Yaroslavtsev A. // Membranes. 2023. V. 13. P. 624.
  23. Ge L., Wu B., Yu D., Mondal A.N., Hou L., Afsar N.U., Li Q., Xu T., Miao J., Xu T. // Chin. J Chem. Eng. 2017. V. 25. P. 1606.
  24. Ye B., Liu H., Ye M., Zeng C., Luo H., Liu G., Zhang R., Huang H. // Desalination. 2022. V. 523. P. 115394.
  25. Cohen B., Lazarovitch N., Gilron J. // Desalination. 2018. V. 431. P. 126.
  26. Bakangura E., Wu L., Ge L., Yang Zh., Xu T. // Progr. Polym. Sci. 2016. V. 57. P. 103.
  27. Stenina I.A., Yaroslavtsev A.B. // Membranes. 2021. V. 11. P. 198.
  28. Abdullah R., Astira D., Widyanto A.R., Dharma H.N.C., Hidayat A.R.P., Santoso L., Sulistiono D.O., Rahmawati Z., Gunawan T., Jaafar J., Kusumawati Y., Othman M.H.D., Fansuri H. // Case Stud. Chem. Environ. Eng. 2023. V. 8. P. 100485.
  29. Kurian M. // J. Envir. Chem. Eng. 2020. V. 8. P. 104439.
  30. Golubenko D.V., Manin A.D., Wang Y., Xu T., Yaroslavtsev A.B. // Desalination. 2022. 531. P. 115719.
  31. Tinh V.D.C., Kim D. // J. Memb. Sci. 2020, V. 613. P. 118517.
  32. Yurova P.A., Malakhova V.R., Gerasimova E.V., Stenina I.A., Yaroslavtsev A.B. // Polymers. 2021. V. 13. P. 2513.
  33. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. 2008. V. 139. P. 3.
  34. Воропаева Е.Ю., Сангинов Е.А., Волков В.И., Павлов А.А., Шалимов А.С., Стенина И.А., Ярославцев А.Б. // Журнал неорганической химии. 2008. Т. 53. С. 1643.
  35. Golubenko D.V., Van der Bruggen B., Yaroslavtsev A.B. // J. Appl. Polymer Sci. 2019. P. 48656.
  36. Ковалев Н.В., Карпенко Т.В., Шельдешов Н.В., Заболоцкий В.И. // Мембраны и мембранные технологии. 2021. Т. 11. С. 263.
  37. Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., Sarapulova V., Wang Y., Jiang C., Xu T., Nikonenko V. // Polymers. 2023. V. 15. P. 2288.
  38. Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. // J. Memb. Sci. 2022. V. 651. P. 120449.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the cell for measuring the selective permeability of membranes: 1 and 6 are chambers in which the electrode solution circulates, 2 and 5 are chambers in which the buffer solution circulates, 3 is a desalination chamber, 4 is a concentration chamber. The membrane under study is located between chambers 3 and 4. The arrows indicate the directions of solution flows, the circles and protrusions on the sides indicate the attachment points of the hoses for pumping solutions through the cell.

Baixar (6KB)
3. Fig. 2. Fragments of IR spectra of the obtained composite materials based on the MA-41 membrane and cerium oxide: MA_41 (1), MA_Ce_3 (2), MA_Ce_3_NaP (3).

Baixar (21KB)
4. Fig. 3. SEM images (a, c) and distribution of cerium (b, d) and phosphorus (d) by thickness in the membranes MA_Ce_3 (a, b) and MA_Ce_3_NaP (c–d) according to energy-dispersive X-ray spectroscopy data.

Baixar (33KB)
5. Fig. 4. Dependences of conductivity on the inverse temperature for the obtained membranes in chloride (a) and bicarbonate (b) forms: MA-41 (1), MA_Ce_3 (2), MA_Ce_3_NaP (3), MA_Ce_6 (4), MA_Ce_6_NaP (5).

Baixar (27KB)
6. Fig. 5. Voltammetric curves for membranes obtained using three (a) and six (b) processing cycles. The designations “mod” and “non-mod” correspond to which side (modified or unmodified) of the membrane is turned toward the desalinated solution.

Baixar (35KB)
7. Fig. 6. Selective permeability coefficients of the obtained membranes for different pairs of anions: Cl/SO42–, NO3/SO42 and Cl/NO3. The designations “mod” and “non-mod” correspond to which side (modified or unmodified) of the membrane is turned toward the desalinated solution.

Baixar (7KB)
8. Fig. 7. Selective permeability coefficients of membranes MA-41 (a) and MA_Ce_6 (b) for different pairs of anions: Cl/NO3 (1), Cl/SO42– (2) and NO3/SO42 (3), determined over 24 hours.

Baixar (29KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024