RESTITIC ORIGIN OF GARNETS AND LHERZOLITES CONTAINING THEM FROM THE MIR AND V. GRIB KIMBERLITE PIPES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of studying the chemical composition of “depleted” garnets from lherzolite xenoliths of the highly diamondiferous Mir and V. Grib kimberlite pipes. Garnets from the Mir pipe xenoliths are distinguished by their rather large sizes, up to 15 mm; the shape of the grains is often complicated by hooked and elongated formations. Garnets from the V. Grib pipe have a more rounded shape and range in size from 1 to 4 mm. Based on the content of CaO and Cr2O3, the garnets belong to the lherzolite paragenesis. Garnets from the studied xenoliths have low contents of incompatible elements and have fractionated REE distributions with a sharp decrease from heavy to light. The LREE concentrations are 10 or more times lower than in the composition of chondrite. Variations in Y and Zr contents form a trend from “depleted” peridotites to “metasomatized” lherzolites, which can be observed both within a single xenolith and within a single grain. While metasomatized garnets show an increase in Y and Zr contents from the cneter to the edge, in depleted garnets the peripheral regions of garnet grains are depleted in Y, Zr, Ti and LREE, in contrast to their central parts. These features of the chemical composition and morphology of garnets indicate their restite origin as a result of partial melting. For the first time, it has been shown that restitic lherzolites have been preserved in the upper horizons of the lithospheric mantle, the garnets in which have not been subjected to metasomatic changes.

About the authors

I. S. Karputin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: karputinis@igm.nsc.ru, i.karputin@g.nsu.ru
Novosibirsk, Russia; Novosibirsk, Russia

A. M. Agashev

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: karputinis@igm.nsc.ru, i.karputin@g.nsu.ru
Novosibirsk, Russia

E. V. Agasheva

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: karputinis@igm.nsc.ru, i.karputin@g.nsu.ru
Novosibirsk, Russia

I. V. Serov

PJSC ALROSA

Email: karputinis@igm.nsc.ru, i.karputin@g.nsu.ru

N. P. Pokhilenko

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: karputinis@igm.nsc.ru, i.karputin@g.nsu.ru
Novosibirsk, Russia

References

  1. Griffin W., O’Reilly S., Abe N., Aulbach S., Davies R., Pearson N., Doyle B., Kivi K. The origin and evolution of Archean lithospheric mantle // Precambrian Research. 2003. V. 127. № 1. P. 19‒41.
  2. Canil D., Wei K. Constraints on the origin of mantle-derived low Ca garnets // Contrib. to Mineral. and Petrol. 1992. V. 109. № 4. P. 421‒430.
  3. Gibson S.A. On the nature and origin of garnet in highly-refractory Archean lithospheric mantle: Constraints from garnet exsolved in Kaapvaal craton orthopyroxenes // Mineralogical Magazine. 2017. V. 81. № 4. P. 781‒809.
  4. Simon N.S.C., Carlson R.W., Pearson D.G., Davies G.R. The origin and evolution of the Kaapvaal cratonic lithospheric mantle // Journal of Petrology. 2007. V. 48. № 3. P. 589‒625.
  5. Похиленко Н.П., Агашев А.М., Литасов К.Д., Похиленко Л.Н. Карбонатитовый метасоматоз деплетированных перидотитов литосферной мантии: Cвязь с алмазообразованием и выплавкой магм карбонатит-кимберлитовой ассоциации // Геология и Геофизика. 2015. № 1‒2.
  6. Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya // Lithos. 2013. V. 160. P. 201‒215.
  7. Agasheva E.V., Gudimova A.I., Chervyakovskii V.S., Agashev A.M. Contrasting diamond potentials of kimberlites of the V. Grib and TsNIGRI-Arkhangelskaya pipes (Arkhangelsk Diamondiferous Province) as a result of the different compositions and evolution of the lithospheric mantle: data on the contents of major and trace elements in garnet xenocrysts // Russian Geology and Geophysics. 2023. V. 64 (12). P. 1459–1480. https://doi.org/10.2113/RGG20234569
  8. Shchukina E.V., Agashev A.M., Pokhilenko N.P. Metasomatic origin of garnet xenocrysts from the V. Grib kimberlitepipe, Arkhangelsk region, NW Russia // Geosci. Frontiers. 2017. V. 8. № 4. P. 641‒651.
  9. Агашев А.М., Серов И.В., Толстов А.В., Щукина Е.В., Рагозин А.Л., Похиленко Н.П. Новая генетическая классификация гранатов литосферной мантии // Эффективность геологоразведочных работ на алмазы: прогнозно-ресурсные, методические, инновационно-технологические пути её повышения. 2018. С. 339‒341.
  10. Agashev A.M., Chervyakovskaya M.V., Serov I.V., Tolstov A.V., Agasheva E.V., Votyakov S.L. Source rejuvenation vs. reheating: Constraints on Siberian kimberlite origin from U/Pb and Lu/Hf isotope compositions and geochemistry of mantle zircons // Lithos. 2020. V. 364. P. 105508.
  11. Agasheva E. Magmatic material in sandstone shows prospects for new diamond deposits within the Northern East European Platform // Minerals. 2021. V. 11. P. 339. https://doi.org/10.3390/min11040339
  12. Grütter H.S., Gurney J.J., Menzies A.H., Winter F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers // Lithos. 2004. V. 77. № 1‒4. P. 841‒857.
  13. Sobolev N.V., Lavrent’ev Y.G., Pokhilenko N.P., Usova L.V. Chrome-rich garnets from the kimberlites of Yakutia and their parageneses // Contrib. to Mineral. and Petrol. 1973. V. 40. P. 39‒52.
  14. Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I.S. Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya // Lithos. 2013. V. 160. P. 201‒215.
  15. Агашев А.М. Геохимия мегакристаллов граната из кимберлитовой трубки Мир (Якутия) и природа протокимберлитового расплава // ДАН. Науки о Земле. 2019. Т. 486. № 5. С. 583‒587.
  16. Doucet L.S., Ionov D.A., Golovin A.V. The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia // Contrib. to Mineral. and Petrol. 2013. V. 165. P. 1225‒1242.
  17. Ryan C.G., Griffin W.L., Pearson N.J. Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks // Journal of Geophysical Research: Solid Earth. 1996. V. 101. № B3. P. 5611‒5625.
  18. Agasheva E., Gudimova A., Malygina E., Agashev A., Ragozin A., Murav’eva E., Dymshits A. Thermal state and thickness of the lithospheric mantle beneath the Northern East-European Platform: evidence from clinopyroxene xenocrysts in kimberlite pipes from the Arkhangelsk region (NW Russia) and its applications in diamond exploration // Geosciences. 2024. V. 14. P. 229.
  19. McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geology. 1995. V. 120. № 3‒4. P. 223‒253.
  20. Wittig N., Pearson D.G., Webb M., Ottley C.J., Irvine G.J., Kopylova M., Jensen S.M., Nowell G.M. Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland // Earth and Planetary Science Letters. 2008. V. 274. № 1‒2. P. 24‒33.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences