Vliyanie teploakkumuliruyushchey steny s vodyanym teploobmennikom na okhlazhdayushchuyu nagruzku v zdanii. Chast' 1



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents the results of mathematical modeling and experimental research of the effect of a heataccumulating wall with a water heat exchanger on building cooling. The first part describes the mathematical model of the building. The modeling was carried out using the TRNSYS program that allowed computing an hourly load of cooling the heataccumulating walls with a water heat exchanger for the purpose of subsequent comparison with the cooling load of a sample room. The building modeling scheme, the heat network model, and the method of calculating the total thermal resistance of the thermosetting wall layer are given as well

Full Text

Restricted Access

References

  1. Carli M., Deckee H. Development of a simplified method for sizing ThermoActive Building Systems (TABS). - Italia: University of Padua, 2014. - 85 p.
  2. George R., Namee W., Kasim T. et al. The reference in solar thermal energy and its applications. -Syria: Al baath university, 2009. - 670 p.
  3. Glück B., Windisch K. Strahlungsheizung. Theorie und Praxis. - Germany, Karlsruhe: Verlag C. F. Müller, 1982. - 507 p.
  4. Ibrahim M., Wurtz E., Biwole P., Achard P. Transferring the south solar energy to the north facade through embedded water pipes // Journal of Energy. 2014. V. 78. P. 834-845.
  5. Izquierdo B. et al. A numerical study of external building walls containing phase change materials (PCM) // Journal of Applied Thermal Engineering. 2012. V. 47, P. 73-85.
  6. Jin X., Zhang S., XU X., Zhang X. Effects of PCM state on its phase change performance and the thermal performance of building walls // Building and winter of Environment. 2014. V. 81. P. 334-339.
  7. Kashif I. et al. Performance evaluation of PVTrombe wall for sustainable building development //Journal of Procedia CIRP. 2015. V. 26, P. 624-629.
  8. Klein S. A. et al. TRNSYS: a transient simulation program/ User Manual. -USA: University of WisconsimMadison. 2006, version 16.1.
  9. Koschenz M., Lehmann B. EMPA, Abteilung Energiesysteme/Haustechnik, CH8600 Dübendorf (Switzerland); Stefan Holst, TRANSSOLAR// Energietechnik GmbH, D70569 Stuttgart (Germany), 2000.
  10. Oropeza I., Alberg P. Active and passive cooling methods for dwellings: a review // Renewable and Sustainable Energy Reviews. 2018. V. 82. P. 531-544.
  11. Perna et al. Trombe wall management in summer conditions: An experimental study // Journal of Solar Energy. 2012. V. 86. P. 2839 -2851.
  12. Shen. J. et al. Numerical study on thermal behavior of classical or composite Trombe solar walls // Journal of Energy and Buildings. 2007. V. 39. P. 962-974.
  13. Stevanovic S. Optimization of passive solar design strategies: a review // Renew Sustain Energy Rev. 2013. V. 25. P. 177-196.
  14. SUN et al. The applicability of the wall implanted with heat pipes in China // Journal of Energy and Buildings. 2015. V. 104. P. 36-46.
  15. Wang R.Z., Xu Z.Y. et al. Advances in Solar Heat and Cooling. 1 edition. - Woodhead Publishing. Series in Energy book (102), 2016. - 596 p.
  16. YU et al. A thermoactivated wall for load reduction and supplementary cooling with free to lowcost thermal water // Journal of Energy. 2016. V. 99. P. 250-265.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Dzhenblat S., Volkova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies