Vliyanie klimata na rabotu kholodil'noy sistemy, ispol'zuyushchey effektivnoe izluchenie v kosmicheskoe prostranstvo



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Theoretically possible cooling capacity of an ideal refrigeration system using the effective radiation into space was calculated by two methods. The calculations were performed for the cities located from 43 ° to 59 ° north latitude: Almaty, Vladivostok, UstKamenogorsk, Petropavlovsk, Omsk, Kazan, Moscow and St. Petersburg. The graphs of the total amount of cold for the year and for some months depending on the temperature of the radiating surface are shown. It is found that the greatest amount of cold for the year can be produced in the climatic conditions of the city of Omsk, and the smallest in Almaty. A method for estimating the amount of heat withdrawn from the radiator due to convective heat transfer through the cooling degreehours is developed. The results of the calculation of the cooling degreehours for the year for all of the above cities are presented. Also graphs in the article are showing how many hours per year the temperature in each of the cities is below given temperature. With the help of these graphs it is expected to make an assessment of the working time of the refrigeration system during the year. In the summer period due to effective radiation the coolant temperature can become not lower than 15...20 °C. In the winter, it is impossible to use the effective radiation for stable cooling to a temperature below -10 °C all reviewed cities. The data obtained can be used in the design of cooling systems of the considered type, as well as in the standard refrigeration systems that use natural cooling (Free cooling).

References

  1. Атмосфера: справочник / Под ред. Седунова Ю.С. - Ленинград: Гидрометеоиздат, 1991.
  2. Гранев В.В., Гиндоян А.Г., Авдеев К.В. О температурных воздействиях на ограждающие конструкции зданий холодильников // Промышленное и гражданское строительство. 2009. № 11.
  3. Зайцев А.В. Энергосберегающие технологии современной техники бытового и жилищнокоммунального назначения // Техникотехнологические проблемы сервиса. 2010. № 3 (13).
  4. Кондратьев К.Я. Актинометрия.- Ленинград: Гидрометеорологическое издво, 1965.
  5. СНиП 230199. Строительная климотология. Введено 20000101. - М. : Издво стандартов, 2001.
  6. Цой А.П., Грановский А.С., Бараненко А.В. Моделирование и математическая программа для расчета величины эффективного излучения // Вестник МАХ. 2014. № 1.
  7. Цой А.П., Грановский А.С., Бараненко А.В., Эглит А.Я. Расчет величины эффективной холодопроизводительности холодильной системы, использующей охлаждающий эффект небосвода // Вестник МАХ. 2014. № 3.
  8. Dobson R.T. Thermal Modeling of a Night Sky Radiation Cooling System. //J. Energy in Southern Africa. 2005. Vol. 16, № 2.
  9. Shuo Zhang. Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material (MPCM) slurry storage [Text] / Shuo Zhang, JianleiNiu // Energy and Buildings. 2012. № 54.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Tsoy A.P., Granovskiy A.S., Tsoy D.A., Baranenko A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies