Teploprovodnost' ineevogo krioosadka kak faktor, opredelyayushchiy teploperedachu v kamernykh priborakh okhlazhdeniya



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Frost formation on lowtemperature surfaces of heatexchangers is a process that reduces the efficiency of a number of refrigeration machines and devices. One of the most important parameters that affect the accuracy of mathematical modeling of the process of nonstationary frost formation is thermal conductivity of frost layer and its correlations. It is necessary for thermal and hydraulic design of equipment. The existing correlations of different researchers are correct in narrow ranges of temperatures and humidity; only a few of them are suitable for use in low temperature engineering. The correlations in the present work determine the thermal conductivity of the depositing frost layer, taking into account the effect of temperature on its structure. They are based on the correlations of the local thermal conductivity of frost from its local temperature and density and thereby increase significantly the accuracy of calculations of the coefficient of thermal conductivity of the frost layer in a wide range of temperatures for densities of the frost less than 300 kg/m3.

Full Text

Restricted Access

References

  1. Куваева Г.М., Сулаквелидзе Г.К. Миграция водяных паров в снежном покрове: сб. Снежный покров, его распространение и роль в народном хозяйстве. - М.: АН СССР, 1962. С. 12-18.
  2. Ломакин В. Н., Чепурной М.Н. Исследование теплофизических свойств намораживаемого инея // Холодильная техника. 1989. № 11. С. 32-35.
  3. Маринюк Б.Т., Королев И.А. Расчет и анализ динамики роста толщины слоя водного инея на охлаждаемой поверхности // Холодильная техника. 2016. № 11. С. 38-43.
  4. Напалков Г.Н. Тепломассоперенос в условиях образования инея. - М.: Машиностроение, 1983. - 189 с.
  5. Сократов С. А. Экспериментальное изучение переноса тепла и водяного пара в снеге: дис. канд. техн. наук. Институт изучения низких температур, Университет Хоккайдо, Саппоро, Япония, 1997.
  6. Явнель Б. К. Отчет по теме «Исследование теплообмена в испарителях торговых холодильных установок». - М.: ФГБНУ ВНИХИ, 1969 г.
  7. Biguria G., Wenzel L. A. Measurement and correlation of water frost thermal conductivity and density // I&EC Fundamentals. 1970. 9(1). P. 129-138.
  8. Brailsford A. D., Major K. G. The thermal conductivity of aggregates of several phases, including porous materials // Br. J. Appl. Phys. 15. 1964. P. 313-319.
  9. Brian P.L.T., Reid R.C., Shah Y.T. Frost Deposition on Cold Surfaces // Ind. Eng. Chem. Fundam. Vol. 9. No. 3. 1970. P. 375-380.
  10. Dietenberger M. A. Generalized correlation of the water frost thermal conductivity // Int. J. Heat Mass Transfer. Vol. 26. No. 4. 1983. P. 607-619.
  11. Gall L., Grillot R. J., Jallut M. Modelling of frost growth and densification // Int. J. Heat and Mass Transfer. vol. 40, No. 13. 1997. P.3177-3187.
  12. Iragorry J., Tao Y.X. , Jia S. Review Article: A Critical Review of Properties and Models for Frost Formation Analysis // HVAC&R Research. 10:4. 2004. P. 393-420.
  13. Kandula M. On the effective thermal conductivity of porous packed beds with uniform spherical particles // l of Porous Media, February. 2010.
  14. Marinyuk B.T. Heat and mass transfer under frosting conditions// Int. J. Refrig. 3(6). 1980. P.366-368.
  15. Sahin A.Z. Effective thermal conductivity of frost during the crystal growth period // International Journal of Heat and Mass Transfer. №43. 2000. P. 539-553.
  16. Sanders C.T. Frost formation: the influence of frost formation and defrosting on the performance of air coolers: Ph.D. thesis. Technische Hogeschool, Delft, The Netherlands,1974.
  17. Shin J., Tikhonov A.V., Kim C. Experimental Study on Frost Structure on Surfaces With Different Hydrophilicity: Density and Thermal Conductivity // ASME Journal of Heat Transfer. 125. 2003. P. 84-94.
  18. Silvia N., Cardoso R. P., Hermes C. J.L. A finitevolume diffusionlimited aggregation model for predicting the effective thermal conductivity of frost // International Journal of Heat and Mass Transfer. 101. 2016. P. 1263-1272.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Marinyuk B.T., Korolev I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies