Osobennosti formirovaniya i dinamiki rosta ineya na teploobmennykh poverkhnostyakh kriogennogo oborudovaniya



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

At present the description of a heat and mass exchange under conditions of the frost formation at the level of cryogenic temperatures is urgent and still littlestudied. The most important for engineering practice in this case is the analysis of the thickness increase of the frost layer. Based on the experiments carried out the authors describe the main features of the frost formation on the wall at cryogenic impact linked with high temperature gradients and air moisture content both in the volume and near the frost surface. The dependences describing the dynamics of growth of the frost layer thickness are offered; they are compared with reliable experimental data. A satisfactory accuracy of dependences to conduct engineering calculations when designing the cryogenic equipment was shown. Based on the analysis of the dynamics of the frost layer growth the authors suggest a particular scheme of grouping panels of atmospheric gasifiers of cryoproducts that allows suppressing the increase of cryosediment on the working surfaces.

Full Text

Restricted Access

References

  1. Маринюк Б. Т. Аппараты холодильных машин (теория и расчет). - М.: Энергоатомиздат, 1995. - 160 с.
  2. Маринюк Б. Т. Расчеты теплообмена в аппаратах и системах низкотемпературной техники. - М.: Машиностроение, 2015. - 272 с.
  3. Маринюк Б.Т., Королев И.А. Расчет и анализ динамики роста толщины слоя водного инея на охлаждаемой поверхности // Холодильная техника. 2016. № 11. С. 38-43.
  4. Напалков Г.Н. Тепломассоперенос в условиях образования инея.- М.: Машиностроение, 1983.- 189 с.
  5. Федорова Е.Б. Современное состояние и развитие мировой индустрии сжиженного газа: технологии и оборудование. - М.: РГУ нефти и газа имени И.М. Губкина, 2011. - 159 с.
  6. Bernert R.E., Everett W. Cryogenic ambient air vaporizers: frost growth, wind and seismic design for safety // Cryogenics. 1993. Vol. 33. No 8. P. 789-793.
  7. Brian P. L. T., Reid R. C., Brazinsky F. Cryogenic Frost Properties // Cryogenic Technology. 1969. №5. P. 205-212.
  8. Hermes C.J.L., Piucco R.O., Barbosa J.R. et al. A study of frost growth and densification on flat surfaces // Exp. Therm. Fluid Sci. 2009. Vol. 33 P. 371-379.
  9. Iragorry J., Tao Y.X., Jia S. Review Article: A Critical Review of Properties and Models for Frost Formation Analysis // HVAC&R Research. 2004. Vol. 10 №4. P. 393-420.
  10. Kim K., Lee K.S. Frosting and defrosting characteristics of a fin according to surface contact angle // International Journal of Heat and Mass Transfer. 2011. Vol. 54 P. 2758-2764.
  11. Kim K.H., Ko H.J., Kim K. et al. Analysis of heat transfer and frost layer formation on a cryogenic tank wall exposed to the humid atmospheric air // Applied Thermal Engineering. 2009. Vol. 29. P. 2072-2079.
  12. Kuang Y.W., Yi C.C., Wang W. Numerical simulation of frosting behavior and its effect on a direct contact ambient air vaporizer // Journal of Natural Gas Science and Engineering. 2015. Vol. 27 P. 55-63.
  13. Liu Z., Wang H., Zhang X. et al. An experimental study on minimizing frost deposition on a cold surface under natural convection conditions by use of a novel antifrosting paint // International Journal of Refrigeration 2006. Vol. 29 P. 229-236.
  14. Marinyuk B. T. Heat and mass transfer under frosting conditions // International Journal of Refrigeration 1980.Vol. 3 №6 Nov. P.366-368
  15. Rosetta M.J., Price B.C., Himmelberger L. Optimize energy consumption for LNG vaporization // HYDROCARBON PROCESSINGS. 2006. Vol. 85 №1. P. 57-64.
  16. Sahin A. Z. Effective thermal conductivity of frost during the crystal growth period // International Journal of Heat and Mass Transfer 2000. Vol. 43. P. 539-553.
  17. Zhongliang L., Yuwan D., Yanxia L. An experimental study of frost formation on cryogenic surfaces under natural convection conditions // International Journal of Heat and Mass Transfer. 2016. Vol. 97. P. 569-577.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Marinyuk B.T., Korolev I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies