Методика оценки эффективности работы холодильных установок на базе цикла одноступенчатого сжатия
- Авторы: Талызин М.С.1
-
Учреждения:
- Международная Академия Холода
- Выпуск: Том 110, № 1 (2021)
- Страницы: 63-69
- Раздел: Краткие сообщения
- URL: https://freezetech.ru/0023-124X/article/view/321752
- DOI: https://doi.org/10.17816/RF321752
- ID: 321752
Цитировать
Полный текст



Аннотация
Развитие средств автоматизации и программирования является одним из приоритетных направлений, определяемых Государственной программой «Национальная технологическая инициатива», что требует развития методик, на базе которых будут строиться алгоритмы.
В то же время, одним из направлений развития холодильной техники является энергосбережение. Этому вопросу уделяется внимание как на государственном уровне (Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации»), так и самими пользователями холодильного оборудования, поскольку доля затрат электроэнергии, потребляемой холодильным оборудованием, составляет значительную часть в общем энергетическом балансе конкретного предприятия. Например, доля энергопотребления систем кондиционирования в странах Европы составляет от 2% до 6%.
Существующие системы мониторинга рабочих параметров холодильной установки не полностью используют свой ресурс, поскольку очень часто применяются лишь для выявления аварийных ситуаций и сигнализации об их возникновении.
В данной статье описывается методика оценки энергоэффективности холодильных установок, работающих по циклу одноступенчатого сжатия с однократным дросселированием, позволяющая производить оценку как на этапе проектирования, так и в процессе работы холодильной установки, и позволяет получить распределение потерь по элементам и процессам холодильной установки.
Полный текст
Разработанная методика представляет собой алгоритм по определению затрат работы на компенсацию производства энтропии по элементам системы [1] с учетом свойств хладагентов. Методика позволяет проводить анализ, как на этапе проектирования, так и в процессе эксплуатации холодильной установки.
В данной статье рассматривается методика анализа цикла одноступенчатого сжатия с однократным дросселированием как наиболее часто применяемого в холодильных установках.
Свойства хладагента в узловых точках цикла определяются по методике, предложенной Э.И. Вайнфельдом и П.Н. Монтиком [2] с дополнениями, позволяющими использовать ее для анализа холодильных установок.
В качестве исходных данных принимаются следующие величины:
to – температура кипения хладагента в испарителе, °С;
To – температура кипения хладагента в испарителе, К;
Tк – температура конденсации хладагента, К;
tк – температура конденсации хладагента, °С;
ΔТпер_исп – перегрев в испарителе, К;
ΔТпер_вс – перегрев на всасывании в компрессор, К;
ΔТпо – переохлаждение жидкого хладагента, К;
tн – температура нагнетания компрессора, °С;
ηад – адиабатный КПД компрессора, %;
tп – температура в охлаждаемом объеме, °С;
tос – температура окружающей среды, °С.
Исходные данные могут быть использованы как расчетные, так и измеренные в процессе работы холодильной установки и зарегистрированные системой мониторинга, что позволяет производить анализ в реальном времени.
По известным значениям to и tк определяем соответствующие давления насыщенных паров хладагента:
, (1)
, (2)
где D0, D1, D2– коэффициенты, применяемые для расчета свойств хладагента.
Если хладагент является зеотропной смесью, то по найденным значениям давления определяются значения температур на линии насыщенной жидкости:
, (3)
. (4)
Эти уравнения могут быть использованы и в том случае, если известны давления конденсации и кипения, коэффициенты D нужно брать с индексом «ж» для насыщенной жидкости, без индекса – для насыщенного пара.
Цикл с указанием узловых точек на диаграмме энтальпия-давление представлен на рис. 1.
Рис. 1. Принципиальная схема цикла одноступенчатого сжатия с однократным дросселированием.
Fig. 1. Schematic diagram of single-stage compression cycle with single throttling.
Давление в узловых точках цикла определяется равенствами:
p1 = p6 = p7 = p8 = po , (5)
p2 = p2s = p3 = p4 = p5 = pк . (6)
По известным значениям температур, перегрева и переохлаждения можно определить следующие параметры:
t7 = to , (7)
t8 = t7 + ΔTпер_исп , (8)
t1 = t8 + ΔTпер_вс , (9)
t3 = tк , (10)
t4 = tк_нас ж , (11)
t5 = t4 – ΔTпо . (12)
Для дальнейших расчетов используются величины температур в Кельвинах и параметр , который определяется как:
. (13)
Значения энтропии и энтальпии в идеальном газовом состоянии в точках 1, 3, 7, 8 вычисляются согласно:
, (14)
, (15)
где h0 и s0 – энтальпия ( ) и энтропия ( ) в состоянии идеального газа, соответственно.
Энтальпия и энтропия в точках 1, 3, 7, 8 рассчитывается по следующим зависимостям:
, (16)
(17)
Энтропия в точке 4 и энтропия насыщенной жидкости при давлении po (s6_насж) определяются как:
. (18)
Энтальпия в точках 4, 5, 6_нас.ж в зависимости от соответствующих значений температур можно вычислить согласно формуле:
. (19)
Энтальпию в точке 5 и энтропию в точке 2s определяем как:
h6 = h5 , (20)
s2S = s1 . (21)
Начальное значение температуры нагнетания из условия адиабатного сжатия задается согласно
. (22)
На основании полученного значения рассчитываем значение энтропии s2s_пром по формуле (17), сравниваем это значение с s2s, и, в случае отклонения, корректируем начальное значение температуры, после чего повторяем расчет до тех пор, пока не получим равенство энтропий. Затем фиксируем найденное значение T2s. Находим , h2s_0, h2s по выражениям (13), (14), (16), соответственно.
Далее в зависимости от известных величин – непосредственно измеренной температуры Т2 или значения адиабатного КПД компрессора ηад – расчет производится следующим образом:
- если известно измеренное значение температуры Т2, то определяем значение h2 по зависимостям (14) и (16) и рассчитываем адиабатный КПД компрессора по формуле:
, (23)
- если в расчетах задаемся статистическим значением адиабатного КПД, то энтальпия в точке 2 будет равна:
. (24)
Принимаем за начальное значение температуры в точке 2 найденное ранее значение температуры T2s. Рассчитываем промежуточное значение энтальпии в точке 2 h2_пром по зависимостям (14), (16) и сравниваем его с полученным ранее значением h2. После этого корректируем значение температуры и повторяем расчет до тех пор, пока не выполнится условие
h2_пром = h2 , (25)
Принимаем значение температуры T2 равным значению, при котором выполнилось равенство (25).
Находим , s2_0, s2 по выражениям (13), (15) и (17), соответственно.
Энтропию переохлажденной жидкости (точка 5) находим описанным далее способом. Разделим диапазон между точками 4 и 5 на 40 равных интервалов температур (эмпирическое значение, достаточное для определения энтропии в точке 5, далее расчет ведем по следующей формуле:
. (26)
Интервалы отсчитываются от точки 4 к точке 5.
Энтропию точки 6 определяем как сумму энтропий насыщенного пара и насыщенной жидкости в пропорциях образовавшихся после дросселирования:
. (27)
Определим основные характеристики цикла:
- удельная массовая холодопроизводительность
, (28)
- минимальная необходимая удельная работа для генерации холода
, (29)
- адиабатная работа сжатия
, (30)
- действительная затрачиваемая удельная работа сжатия
, (31)
- степень термодинамического совершенства
, (32)
- холодильный коэффициент при адиабатном процессе сжатия
, (33)
- действительное значение холодильного коэффициента
. (34)
Определим удельную величину необходимой работы для компенсации производства энтропии в основных рабочих процессах холодильной машины по следующим зависимостям:
, (35)
где
, (36)
. (37)
Из соотношения (35), видно, что необходимые удельные затраты работы сжатия для компенсации производства энтропии в конденсаторе складываются из суммы необходимых удельных затрат работ для компенсации производства энтропии при охлаждении паров хладагента от температуры нагнетания до температуры насыщения Δlпк и конденсации паров хладагента в конденсаторе Δlкк.
Необходимые удельные затраты работы сжатия для компенсации производства энтропии при дросселировании:
. (38)
Необходимые удельные затраты работы сжатия для компенсации производства энтропии в испарителе при передаче теплоты от охлаждаемого объекта в цикле при средней температуре воздуха в потребителях (кипение жидкого хладагента):
. (39)
Необходимые удельные затраты работы сжатия для компенсации производства энтропии в испарителе при передаче теплоты qо от охлаждаемого объекта в цикле при средней температуре воздуха в потребителях (перегрев хладагента в испарителе):
. (40)
Общие необходимые удельные затраты работы сжатия для компенсации производства энтропии в испарителе:
. (41)
Необходимые удельные затраты работы сжатия для компенсации производства энтропии при перегреве хладагента на участке от выхода из испарителя до входа в компрессор:
. (42)
Суммируя величины необходимых удельных затрат работы сжатия для компенсации производства энтропии во всех элементах холодильной машины, находим расчетную величину адиабатной работы сжатия:
. (43)
Энергетические потери в компрессоре:
. (44)
Расчетная работа сжатия:
. (45)
Чтобы результаты компенсации производства энтропии были более наглядными, минимальные работы целесообразно выражать в процентах от расчетной работы сжатия.
Проверку результатов анализа проведем путем сравнения с результатами энтропийно-статистического анализа, проведенного в [3] для одноступенчатого цикла на хладагентах R22 и R134а
Исходные данные для анализа представлены в таблице 1.
Таблица 1. Исходные данные для анализа
Table 1. Initial data for analysis
Температура кипения, °С | 5 |
Температура конденсации, °С | 42 |
Перегрев в испарителе, К | 0 |
Перегрев на линии всасывания, К | 0 |
Переохлаждение, К | 0 |
Адиабатный КПД компрессора | 0,8 |
Температура в охлаждаемом объеме, °С | 20 |
Температура окружающей среды, °С | 27 |
Результаты анализа для одноступенчатого цикла приведены в таблице 2.
Таблица 2. Результаты анализа одноступенчатого цикла
Table 2. Results of single-stage cycle analysis
Параметры | R22 | Погрешность, % | R134a | Погрешность, % | ||
источник | методика | источник | методика | |||
qo, кДж/кг | 154,45 | 154,31 | 0,09 | 141,97 | 142,81 | 0,59 |
lmin, кДж/кг | 3,7 | 3,7 | 0,00 | 3,31 | 3,41 | 2,93 |
lад.д, кДж/кг | 25,09 | 24,91 | 0,72 | 23,27 | 23,16 | 0,47 |
lсж, кДж/кг | 31,36 | 31,12 | 0,77 | 29,09 | 28,92 | 0,59 |
ηтерм | 0,118 | 0,118 | 0,00 | 0,114 | 0,118 | 3,39 |
εд | 4,93 | 4,96 | 0,61 | 4,88 | 4,94 | 1,21 |
Δlкд, % | 28,4 | 28,6 | 0,70 | 27 | 26,7 | 1,12 |
Δlдр, % | 12,6 | 12 | 4,76 | 14,8 | 14,7 | 0,68 |
Δlи, % | 27,2 | 27,5 | 1,10 | 27 | 26,9 | 0,37 |
Δlкм, % | 20 | 20 | 0,00 | 20 | 20 | 0,00 |
ЗАКЛЮЧЕНИЕ
Погрешность расчетов по предлагаемой методике не превышает 5%, что достаточно для практического применения.
Применение данной методики позволяет определить элементы и процессы с наибольшими потерями и принять меры для повышения эффективности работы холодильной системы.
Методика может быть использована для создания интеллектуальных систем управления работой холодильных систем.
ДОПОЛНИТЕЛЬНО
Источник финансирования. Автор заявляет об отсутствии внешнего финансирования при проведении поисково-аналитической работы и подготовке рукописи.
Конфликт интересов. Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
ADDITIONAL INFORMATION
Funding source. This publication was not supported by any external sources of funding.
Competing interests. The author declares that they have no competing interests.
Об авторах
Максим Сергеевич Талызин
Международная Академия Холода
Автор, ответственный за переписку.
Email: talyzin_maxim@mail.ru
ORCID iD: 0000-0001-7244-1946
SPIN-код: 6524-3085
к.т.н.
Россия, МоскваСписок литературы
- Архаров А.М. Основы криологии. Энтропийно-статистический анализ низкотемпературных систем. М.: МГТУ им. Н.Э. Баумана, 2014.
- Вайнфельд Э.И., Монтик П.Н. Моделирование термодинамических свойств хладагентов при оценке энергетической эффективности холодильных установок с целью оптимизации. управления // Автоматизація технологічних і бізнес-процесів. 2015. Т. 7, № 2. С. 61–67.
- Шишов В.В. Энтропийно-статистический анализ холодильных циклов для систем кондиционирования // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2012. С. 143–156.
Дополнительные файлы
