Сравнение потерь эффективности из-за перетечек для турбоагрегатов авиационных систем кондиционирования на лепестковых газодинамических подшипниках и шарикоподшипниках
- Авторы: Николаев В.С.1,2, Абалакин С.А.2, Тищенко И.В.1,2
-
Учреждения:
- Московский государственный технический университет им. Н.Э. Баумана (национальный исследовательский университет)
- ПАО НПО «Наука»
- Выпуск: Том 111, № 1 (2022)
- Страницы: 13-20
- Раздел: Оригинальные исследования
- URL: https://freezetech.ru/0023-124X/article/view/96964
- DOI: https://doi.org/10.17816/RF96964
- ID: 96964
Цитировать
Полный текст
Аннотация
Обоснование. Конструкторы турбомашин стремятся повысить эффективность процесса расширения сжатых газов путём уменьшения всевозможных энергетических потерь, которые происходят, в частности, из-за наличия зазоров между рабочим колесом и корпусными элементами турбомашины.
Цель – оценить возможное повышение эффективности при уменьшении радиального и осевого зазора между лопатками радиально-осевого рабочего колеса и корпусом турбодетандера в конструкциях турбомашин на шарикоподшипниках и лепестковых газодинамических подшипниках.
Материалы и методы. Сравнение величины радиального и осевого зазора между лопатками радиально-осевого рабочего колеса и корпусом турбодетандера в конструкциях турбомашин на шарикоподшипниках и лепестковых газодинамических подшипниках выполнялось с помощью анализа опыта разработки турбомашин отечественными и зарубежными специалистами. Приводятся модели оценки потерь эффективности турбодетандера в зависимости от величины радиального и осевого зазоров. Выполнен сравнительный расчёт потери эффективности для турбохолодильников средней и большой холодопроизводительности авиационных систем кондиционирования воздуха.
Результаты и их применение. На основании проведенных расчетов сделан вывод о преобладании влияния радиального зазора. Расчёт показал, что для турбохолодильника средней холодопроизводительности (16 кВт, 2 рабочих колеса) при уменьшении зазоров между рабочим колесом и корпусом в конструкции на лепестковых подшипниках в среднем можно рассчитывать на увеличение КПД на 2,3%, а для турбохолодильника большой производительности (55 кВт, 3 или 4 рабочих колеса) – от 0,75 до 1,4%. Сделан вывод о целесообразности проведения работ по уменьшению радиальных зазоров в конструкциях турбомашин на лепестковых газодинамических подшипниках.
Ключевые слова
Полный текст
Турбомашины – весьма полезные, а зачастую и ключевые элементы холодопроизводящих технологических процессов. В частности, авиационные системы кондиционирования воздуха оснащаются турбохолодильными агрегатами для охлаждения воздуха, подаваемого от компрессора двигателя в гермокабину для обеспечения дыхания экипажа и пассажиров [1]. Современные турбохолодильники гражданских воздушных судов имеют в конструкции от 2-х до 4-х рабочих колёс. Роторы таких турбохолодильников устанавливаются на лепестковые газодинамические подшипники, обладающие по сравнению с опорами качения повышенным ресурсом и не требующие системы смазки и обслуживания.
Конструкторы турбомашин стремятся повысить эффективность процесса расширения сжатых газов путём уменьшения всевозможных энергетических потерь. Схема проточной части турбодетандера приведена на рис. 1. Наряду с такими факторами снижения эффективности, как потери на трение, потери при неравновесном расширении при изменении геометрии проточной части и утечки рабочего тела, существенные потери вызывает наличие зазоров между рабочим колесом и корпусными элементами турбомашины. Наличие зазоров влечет переток рабочего тела в обход колеса без совершения газом работы. Таким образом, при создании турбомашины для повышения эффективности необходимо стремиться минимизировать величины этих зазоров.
Рис. 1. Схема течения газа в проточной части радиально-осевой турбины: d1 – наружный диаметр колеса, d2 – средний диаметр колеса на выходе, d0 – диаметр воронки колеса, dвт – диаметр втулки колеса, l1, l2 – высота лопатки на входе и выходе из колеса, соответственно, Δx – величина осевого зазора, Δr – величина радиального зазора. / Fig. 1. Scheme of gas flow in the flow path of a radial-axial turbine: d1 – outer diameter of the impeller, d2 – average diameter of the impeller at the outlet, d0 – diameter of the impeller funnel, dвт – diameter of the impeller hub, l1 and l2 – blade height at the impeller inlet and outlet, respectively, Δx – axial clearance, Δr – radial clearance.
В то же время зазоры не могут быть слишком малыми ввиду того, что во время работы турбомашины возникают различные вибрации, вызванные как внутренними (переходные процессы), так и внешними причинами (внешняя вибрация, ударные нагрузки, линейное ускорение). Зазоры необходимы для исключения возможности касания движущихся частей ротора (колёс, бесконтактных уплотнений) с неподвижными корпусными частями. Касания могут привести к износу и даже разрушению деталей турбомашины и её выходу из строя.
Таким образом, необходимо искать оптимальную величину зазоров.
Точкой отсчёта при назначении зазоров служит зазор в подшипниках. На рис. 2 приведены характерные зазоры в подшипниках качения и лепестковых газодинамических подшипниках 2-го поколения. Если в подшипниках качения величина зазора сравнительно мала (порядка 10–20 мкм) и трудно поддаётся регулированию, то в газодинамических подшипниках, особенно лепестковых, которые зачастую проектируются под конкретную машину, эта величина может существенно варьировать: от 30 мкм для монтажного зазора, кроме того, прибавляется еще и высота гофров демпфирующего элемента, на которую может перемещаться ротор h = 0,1–0,3 мм.
Рис. 2. Источники зазоров в шариковом подшипнике качения (a) и лепестковом газодинамическом подшипнике (b): Δ – радиальный зазор; C – монтажный зазор, h – высота гофров упругого демпфера. / Fig. 2. Sources of clearances in a ball bearing (a) and a petal-type gas-dynamic bearing (b): Δ – radial clearance; C – mounting clearance, h – height of the corrugations of the elastic damper.
В нашей стране и за рубежом экспериментальные исследования влияния зазоров начали проводить c 1950-х годов [2, 3, 4]. Многолетний опыт отечественных учёных суммирован в учебнике В.И. Епифановой [5]. Подобные исследования проводились и в NASA: Futural и Holeski в [6] показывают, что влияние радиального зазора значительно выше, чем влияние осевого зазора; к аналогичным выводам пришли Давыдов и др. [7], а также Dambach и соавт. в [8]. В работах [5, 9, 10] величина осевого зазора не входит в формулы оценки потери эффективности. В [11] Persky и соавт. и в [12] Cho и соавт.рассматриваются различные комбинации моделей потерь в проточной части для получения лучшей оценки эффективности турбины.
МОДЕЛИ ПОТЕРЬ
Рассмотренные в данной работе методики оценки потерь сведены в таблице. Остановимся на них подробнее. Модели делятся на две группы: оценивающие непосредственно уменьшение изоэнтропного КПД или некоторое соотношение, позволяющее его оценить: например, это оценка потери удельной холодопроизводительности (уменьшение действительной разности энтальпии процесса расширения) . Тогда потеря КПД выражается как отношение потери удельной холодопроизводительности к максимальной удельной разности энтальпий .
Таблица. Методики оценки потерь / Table. Loss estimation methods
Формула | Соотношения для оценки потери эффективности | Потеря эффективности | Ссылка | |
(1) | – | [10] | ||
(2) | [11] | |||
(3) | – | [9] | ||
(4) | [5] | |||
(5) | – | [6] | ||
(6) | – | – «для крупных ТД» | [7] | |
(7) | [13] | |||
(8) | [8] | |||
Примечание. Конструктивные параметры см. на рис. 1. – наружный радиус (диаметр) входа колеса, мм; – средний радиус (диаметр) выхода колеса, мм; – диаметр воронки колеса; – величина радиального зазора, мм; – величина осевого зазора, мм; – относительная величина радиального зазора; – относительная величина радиального зазора; – абсолютная скорость потока рабочего газа на входе в колесо, м/с; – окружная скорость колеса на входе, м/с; – количество лопаток на входе в колесо; – коэффициент расхода; – втулочное отношение колеса [5]; – коэффициент стеснения проходного сечения на выходе из колеса [5]; , , ; , . | Note. Design parameters are given in Fig. 1. – outer radius (diameter) of the impeller inlet, mm; – average radius (diameter) of the impeller outlet, mm; – impeller funnel diameter; – radial clearance, mm; – axial clearance, mm; – relative value of the radial clearance; – relative value of the radial clearance; – absolute velocity of the working gas flow at the impeller inlet, m/s; – circumferential speed of the impeller at the inlet, m/s; – number of blades at the impeller inlet; – flow rate; – hub-tip ratio of the impeller [5]; – constraint coefficient of the passage section at the impeller outlet [5]; , , ; , . |
Наиболее простую оценку потери эффективности (см. таблицу) можно получить с помощью формулы (1), предложенной в работе [10]. Более сложная формула (2) связывает потерю холодопроизводительности процесса расширения со скоростью потока газа на входе [11]. Формулы (3) и (4) связывают величину потерь и конструктивные параметры рабочего колеса [5, 9]. Формулы (5)–(8) аппроксимируют экспериментальные данные [6–8, 13].
Отсутствие осевого зазора во многих из представленных моделей также говорит о его слабом влиянии на эффективность.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Мы проанализировали три конфигурации турбохолодильников: средней мощности с холодопроизводительностью 16 кВт, крупный – с холодопроизводительностью 55 кВт и аналогичный турбохолодильник с двумя ступенями расширения. Для всех вариантов расширение начинается с температурного уровня 308 K.
Для указанных типоразмеров турбохолодильников рассмотрены два варианта назначения радиальных зазоров: первый, когда в конструкции заложены шарикоподшипники на упругих кольцах, и второй, когда ротор турбохолодильника опирается на лепестковые газодинамические подшипники. Ввиду малости конструктивных зазоров в шарикоподшипниках, а соответственно и малых зазоров между рабочими колёсами и корпусом, этот случай будем считать «оптимальным» зазором. Во втором случае, так как на практике неизвестны возможные перемещения ротора в лепестковых подшипниках, назначается «гарантированный» зазор, исключающий возможность касания колёс и корпуса. Обычно гарантированный зазор для лепестковых подшипников как минимум в несколько раз больше зазора для шарикоподшипников.
Сравним потери эффективности в описанных конструкциях в зависимости от величин зазоров и характер изменения этих потерь.
Предварительный анализ показал, что только модели (5) и (7) пригодны для оценки потерь при увеличении относительного осевого зазора, остальные модели не учитывают осевые зазоры для современных турбомашин либо дают некорректные результаты. Модели (5) и (7) показывают, что для увеличения КПД на 1% требуется на порядок уменьшить величину осевого зазора. Однако это возможно при применении мягких (например, графитовых) либо адаптивных уплотнений. Вообще расчёт и обеспечение осевого зазора в конструкциях турбомашин на шарикоподшипниках и на газодинамических подшипниках принципиально не различается. Поэтому далее мы не будем обсуждать влияние осевого зазора и примем его постоянным.
На рисунках 3–5 представлены графики зависимости относительного адиабатического КПД
,
который выражает зависимость потери эффективности от величины зазоров при увеличении относительного радиального зазора
.
Рис. 3. Графики оценок потери эффективности от величины радиального зазора в турбодетандере средней холодопроизводительности (16 кВт) турбохолодильника на лепестковых газодинамических подшипниках, =0,864 (см. источники формул в таблице). / Fig. 3. Graphs of estimates of efficiency loss as a function of the radial clearance in the centrifugal expander of medium cooling capacity (16 kW) of the refrigeration turbine on petal-type gas-dynamic bearings, =0,864 (the formula sources are given in Table).
Рис. 4. Графики оценок потери эффективности от величины радиального зазора в турбодетандере большой холодопроизводительности (55 кВт) турбохолодильника на лепестковых газодинамических подшипниках, =0,850 (обозначения см. на рис. 3). / Fig. 4. Graphs of estimates of efficiency loss as a function of the radial clearance in the centrifugal expander with a large cooling capacity (55 kW) of a refrigeration turbine on petal-type gas-dynamic bearings, =0,850 (designations are given in Fig. 3).
Рис 5. Графики оценок потери эффективности от величины радиального зазора в крупном турбохолодильнике на лепестковых газодинамических подшипниках с двумя ступенями расширения. А – в первой ступени (холодопроизводительность 23 кВт), ; B – во второй ступени (холодопроизводительность 24,7 кВт), (обозначения см. на рис. 3). / Fig. 5. Graphs of estimates of efficiency loss as a function of the value of the radial clearance in a large refrigeration turbine on petal-type gas-dynamic bearings with two stages of expansion. A – stage 1 (cooling capacity 23 kW), ; B – stage 2 (cooling capacity 24.7 kW), (designations are given in Fig. 3).
Повышение адиабатического КПД при уменьшении зазора можно оценить по следующему соотношению:
.
Рисунок 3 иллюстрирует следующее: для турбохолодильника среднего размера оценки разделились на две группы. Первая, в которую входят формулы (3)–(6), показывает сильное падение эффективности при применении газодинамических подшипников: потеря КПД турбодетандера при увеличении относительного радиального зазора может составлять от 3,2 до 4,9%, по сравнению с шарикоподшипниками. Вторая группа, в которую входят формулы (1), (7) и (8), напротив, показывает слабую зависимость относительного КПД от относительной величины радиального зазора (потеря от 0,1 до 0,5%). Среднее положение занимает оценка по формуле (2): КПД меньше на 1,9%.
Таким образом, можно сделать вывод, что в среднем можно рассчитывать на повышение КПД на 2,3%, если удастся приблизить значение зазора для турбохолодильника на лепестковых подшипниках к зазору турбохолодильника на шарикоподшипниках.
Для турбохолодильника большой холодопроизводительности (рис. 4) оценки в целом сходятся в величине утечки при назначении гарантированного зазора. Однако предсказание уменьшения потерь при уменьшении зазора различается. Наиболее оптимистичная оценка, по формуле (6), показывает, что при уменьшении радиального зазора в 2 раза КПД увеличится на 3,4%. По наиболее пессимистичной оценке, формуле (8), увеличение произойдёт только на 0,1%, а в среднем – на 1,4%
Помимо конструктивного совершенствования проточной части турбодетандера в наиболее современных и совершенных системах кондиционирования воздуха применяются схемы с расширением воздуха в двух ступенях с промежуточным теплообменом и влагоотделением. На рис. 5, А, B представлены графики оценок потери эффективности от величины радиального зазора в турбохолодильнике большой холодопроизводительности с двумя ступенями расширения. При уменьшении возможного перемещения ротора в радиальном подшипнике в 2 раза КПД первой ступени в среднем увеличится на 0,8%, второй – на 1,2%. При равных степенях расширения общий КПД процесса расширения увеличится на 1,0%.
ВЫВОДЫ
Проведённый анализ показывает, что назначение гарантированного зазора между лопатками рабочего колеса и корпусом турбодетандера не оптимально, так как снижает максимальный возможный КПД.
Большинство исследователей отмечают преобладающее влияния зазора между корпусом и радиальной частью радиально-осевого рабочего колеса по сравнению с осевым зазором в снижении КПД.
Следует тщательно анализировать возможные перемещения ротора турбоагрегата транспортной системы кондиционирования воздуха на основных и переходных режимах работы, а также в условиях воздействия внешних механических факторов, таких как линейное ускорение, синусоидальная и случайная вибрации и различные ударные нагрузки.
Результаты подробного анализа позволят назначить обоснованную величину радиального зазора в конструкциях на лепестковых газодинамических подшипниках, приблизить его значение к величинам зазоров в конструкциях на подшипниках качения, установленных на упругих кольцах, и в некоторых случаях повысить КПД ступени на несколько процентов.
ДОПОЛНИТЕЛЬНО
Финансирование. Статья не имеет спонсорской поддержки.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов, связанного с подготовкой и публикацией статьи.
Вклад авторов. Все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией.
ADDITIONAL INFORMATION
Funding source. Article is not sponsored.
Competing interests. The author declares no any transparent and potential conflict of interests in relation to this article publication.
Contribution of authors. All authors made a significant contribution to the development of the concept, research and preparation of the article, read and approved the final version before publication.
Об авторах
Виталий Станиславович Николаев
Московский государственный технический университет им. Н.Э. Баумана (национальный исследовательский университет); ПАО НПО «Наука»
Автор, ответственный за переписку.
Email: vs.nikolaev.bmstu@gmail.com
SPIN-код: 5847-3632
аспирант
Россия, 105005, Москва, 2-я Бауманская ул., д.5, стр.1; МоскваСергей Александрович Абалакин
ПАО НПО «Наука»
Email: SA.Abalakin@gmail.com
инженер-конструктор
Россия, МоскваИгорь Валерьевич Тищенко
Московский государственный технический университет им. Н.Э. Баумана (национальный исследовательский университет); ПАО НПО «Наука»
Email: iv.tischenko@bmstu.ru
SPIN-код: 5630-4301
Scopus Author ID: 632877
к.т.н., доцент
Россия, 105005, Москва, 2-я Бауманская ул., д. 5, стр. 1; МоскваСписок литературы
- Дьяченко Ю.В., Спарин В.А., Чичиндаев А.В. и др. Системы жизнеобеспечения летательных аппаратов. Новосибирск: Изд-во НГТУ, 2019. 319 с.
- Рис В.Ф. Центробежные компрессорные машины. М.; Л. Машиностроение, 1964. 336 с.
- Чистяков Ф.М. Холодильные турбоагрегаты. М.: Машиностроение, 1967. 287 с.
- Эккерт Б. Осевые и центробежные компрессоры: Применение, теория, расчет: пер. с нем. М.: Машгиз, 1959. 679 с.
- Епифанова В.И. Компрессорные и расширительные турбомашины радиального типа: учебник для вузов. 2-е изд. М.: Изд-во МГТУ им. Н.Э. Баумана, 1998. 623 с.
- Futral S.M., Holeski D.E. Experimental results of varying the blade-shroud clearance in a 6.02-inch radial-inflow turbine // National Aeronautics and Space Administration. 1970.
- Давыдов А.Б., Кобулашвили А.Ш., Шерстюк А.Н. Расчёт и конструирование турбодетандеров. М.: Машиностроение, 1987. 232 с.
- Dambach R., Hodson H.P., Huntsman I. Turbomachinery Committee Best Paper Award: An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine. J. Turbomach. 1998. № 121. С. 644–650. doi: 10.1115/1.2836716
- Krylov E.P., Spunde Y.A. About the influence of the clearance between the working blades and housing of a radial turbine on its exponent. // Physics, Engineering. 1967. 9 June.
- Rodgers C. A cycle analysis technique for small gas turbines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 183. SAGE Publications Sage UK, London, England, 1968, p. 37–49.
- Persky R., Sauret E. Loss models for on and off-design performance of radial inflow turbomachinery. Applied Thermal Engineering. 2019;150:1066–1077. doi: 10.1016/j.applthermaleng.2019.01.042
- Cho S.K., Lee J., Lee J.I. Comparison of loss models for performance prediction of radial inflow turbine. International Journal of Fluid Machinery and Systems. 2018;11(1):97–109. doi: 10.5293/ijfms.2018.11.1.097
- Moustapha H., Zelesky M., Baines N.C. et al. Axial and Radial Turbines. Vol. 2. Concepts ETI, Inc., 2003. 358 p.
Дополнительные файлы
