Evaluation of density and biomass of arctic charr Salvelinus alpines (L.) complex (Salmoniformes, Salmonidae) from two oligotrophic lakes in Krasnoyarsk Territory

Cover Page

Cite item

Full Text

Abstract

The paper considers the method of fish density estimation by gill net catches of different mesh size. The method is based on the analysis of the number of fish of different size groups approaching the net by simulating the movement of fish resulting in interaction with the net. The method include technical parameters of the net, morphometric features of fish and their behavioral characteristics. The process of interaction between fish and gill net is splitted into a series of sequential stages, each of which has its own probability calculated. The parameters necessary for the calculation are obtained from the primary analysis of catches and partly from literature data. For abundance estimation, its sensitivity to a number of key model parameters is shown. Density estimates were obtained for Arctic charr Salvelinus alpinus (L.) from various locations in Lama and Kapchuk lakes, Krasnoyarsk Territory.

Full Text

Restricted Access

About the authors

Fyodor S. Lobyrev

Lomonosov Moscow State University

Author for correspondence.
Email: lobyrev@mail.ru
ORCID iD: 0000-0003-4258-8765

Candidate of Sciences in Biology, Researcher

Russian Federation, Moscow

References

  1. Izmailova A. V., Korneenkova N. Y. Lake area percentage in Russian Federation Territory and its governing factors. Water Resources. 2020;47(1):13–21. doi: 10.1134/S009780782001008X.
  2. Timoshkin O. A., Samsonov D. P., Yamamura M. et al. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research. 2016;42:487–497. doi: 10.1016/j.jglr.2016.02.011.
  3. Volkova N., Kryuchkova G., Mikhaleva T., Polyaeva K., Sharipov R. Biologicheskaya produktivnost’ ozera Hanbalyk i ego rybohozyajstvennoe ispol’zovanie = [Biological productivity of lake Khabalyk and efficiency of its use for fishing]. Vestnik rybokhozyaystvennoy nauki. 2017;4(3):27–36. (In Russ.).
  4. Lukerin A. Yu., Romanenko G. A., Osipov S. A. Produktivnost’ Kasmalinskoj ozernoj sistemy Altajskogo kraya = [Productivity of Kashmala lake system of the altai territory]. In: Ozera Evrazii: problemy i puti ikh resheniya: Materialy II Mezhdunarodnoy konferentsii. Kazan’; 2019. Vol. 2. P. 292–296. (In Russ.).
  5. Ushakova A. A., Postnov I. E. Rasprostranenie i chislennost’ dvukh vidov ryb (rotana i devyatiigloy kolyushki), yavlyayushchikhsya invazionnymi dlya malykh rek Nizhegorodskoy oblasti. Vestnik Nizhegorodskoy Gosudarstvennoy Sel’skokhozyaystvennoy Akademii. 2019;21(1):21–26. (In Russ.).
  6. Rafikov R. R., Zakharov A. B., Novoselov A. P. Formirovanie rybnogo naseleniya malyh vodohranilishch Respubliki Komi = [Formation of ichthyofauna in the minor reservoirs of the Komi Republiс]. Vestnik Severnogo (Arkticheskogo) Federal’nogo Universiteta. Seriya: Estestvennye Nauki. 2015;(3):59–67. (In Russ.). doi: 10.17238/issn2227-6572.2015.3.59.
  7. Seleznev V. A., Selezneva A. V., Rakhuba A. V. et al. Kompleksnaya ocenka ekologicheskogo sostoyaniya malyh rek (na primere reki Podstepnovki) = [Integrated assessment of the small rivers ecological status (the Podstepnovka river as a study case)]. Vodnoe Khozyaystvo Rossii: Problemy, Tekhnologii, Upravlenie. 2018;(6):83–100. (In Russ.).
  8. Shibaev S. V., Sokolov A. V. Metod analiza ikhtiotsenozov malykh vodoemov Kaliningradskoy oblasti na osnove kontrol’nykh oblovov setnymi orudiyami lova. Trudy VNIRO. Vodnye Biologicheskie Resursy. 2014;151:158–164. (In Russ.).
  9. Ionas V. A. Ob ulovistosti drifternoy seti. Rybnoe Khozyaystvo. 1966;(7):43–45. (In Russ.).
  10. Kushnarenko A. I., Lugarev E. S. Otsenka chislennosti ryb po ulovam passivnymi orudiyami. In: Informatsionnoe i matematicheskoe obespechenie issledovaniy syr’evoy bazy. Sbornik nauchnykh trudov VNIRO. M.; 1985. S. 113–121. (In Russ.).
  11. Grachev A. A., Mel’nikov V. N. Razrabotka i primenenie matematicheskikh modeley dlya povysheniya effektivnosti lova ryby / EKINAS. M.: VNIERH; 2003. Vyp. 1. 48 s. (In Russ.).
  12. Blinov V. V. O matematicheskikh modelyakh priblizheniya ryby k zhabernoy seti. Trudy po promyshlennomu rybolovstvu. TsNIITEiRKh. 1973;1:31–38. (In Russ.).
  13. Baranov F. I. Tekhnika promyshlennogo rybolovstva. M.: Pishchepromizdat; 1960. 696 s. (In Russ.).
  14. Hamley J. M., Regier H. A. Direct estimates of gillnet selectivity to walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada. 1973;30:817–830. doi: 10.1139/f73–137.
  15. Millar R., Fryer R. Estimating the size-selection curves of towed gears, traps, nets and hooks. Reviews in Fish Biology and Fisheries. 1999;9:89–116. doi: 10.1023/A:1008838220001.
  16. Denisov L. I. Metodika pryamogo ucheta chislennosti ryb na Kakhovskom vodokhranilishche. Izvestiya GosNIORKh. 1977;126:114–125. (In Russ.).
  17. Sechin Yu. T. Otsenka chislennosti ryb po ulovam stavnykh setey. In: Voprosy teorii i praktiki promyshlennogo rybolovstva. Povedenie gidrobiontov v zone deystviya orudiy lova. M.: VNIRO; 1998. S. 115–118. (In Russ.).
  18. Winters G. H., Wheeler J. P. Direct and indirect estimation of gillnet selection curves of Atlantic herring (Clupea harengus harengus). Canadian Journal of Fisheries and Aquatic Sciences. 1990;47:460–470. doi: 10.1139/f90–050.
  19. Borgstrøm R. Direct estimation of gill-net selectivity for roach (Rutilus rutilus (L.)) in a small lake. Fisheries Research. 1989;7:289–298. doi: 10.1016/0165–7836(89)90062–3.
  20. Baranov F. I. Teoriya i raschet orudiy rybolovstva. M.: Pishchepromizdat; 1939. 965 s.
  21. Sechin Yu. T. Matematicheskaya model’ krivoy otnositel’noy ulovistosti zhabernykh setey. Rybnoe Khozyaystvo. 1969;(9):56–58. (In Russ.).
  22. Mahon R., Khokiattiwong S., Oxenford H. Selectivity of experimental gillnets for fourwing flyingfish, Hirundichthys affinis, off Barbados. Environmental Biology of Fishes. 2000;59;459–463. doi: 10.1023/A:1026525311594.
  23. Millar R. Untangling the confusion surrounding the estimation of gillnet selectivity. Canadian Journal of Fisheries and Aquatic Sciences. 2000;55:1328–1337. doi: 10.1139/f99–275.
  24. Tanaka E. A. Мethod for calculating numerical estimates of gear selectivity curve. Fisheries Science. 2002;68:1081–1087. DOI: doi: 10.1046/j.1444–2906.2002.00535.x.
  25. Santos M., Gaspar M., Monteiro C., Erzini K. Gill net selectivity for European hake Merluccius merluccius from southern Portugal: plications for fishery management. Fisheries Science. 2003;69:873–882. doi: 10.1046/j.1444–2906.2003.00702.x.
  26. György A. I., Tata I., Special A. Relationship between horizontal hydroacoustic stock estimates and gill net catches of surface-oriented fish in shallow Lake Balaton (Hungary). Knowledge and Management of Aquatic Ecosystems. 2002;405:6–23. doi: 10.1051/kmae/2012012.
  27. DuFour M.R., Qian S. S., Mayer C. M., Van der Goot C. S. Evaluating catchability in a large-scale gill net survey using hydroacoustics: making the case for coupled surveys. Fisheries Research. 2019;211:309–318. DOI: 0.1016/j.fishres.2018.11.009.
  28. Millar R. The functional form of hook and gillnet selection curves cannot be determined from comparative catch data alone. Canadian Journal of Fisheries and Aquatic Sciences. 1995;52:883–981. doi: 10.1139/f95–088.
  29. Iznankin Yu. A. Ulovistost’ zhabernykh setey. Trudy VNIRO. 1959;41:24–135. (In Russ.).
  30. Nikol’skiy G. V. Teoriya dinamiki stada ryb kak biologicheskaya osnova ratsional’noy ekspluatatsii i vosproizvodstva rybnykh resursov. Moskva: Nauka; 1965. 382 s. (In Russ.).
  31. Treshchev A. I. Intensivnost’ rybolovstva. M.: Legkaya i Pishchevaya Promyshlennost’; 1983. 236 s. (In Russ.).
  32. Sechin Yu. T. Matematicheskaya model’ krivoy otnositel’noy ulovistosti zhabernykh setey. Rybnoe Khozyaystvo. 1969;(9):56–58. (In Russ.).
  33. Baranov F. I. O biologicheskikh osnovaniyakh rybnogo khozyaystva. Izvestiya Otdela Rybovodstva i Nauchno-Promyshlennykh Issledovaniy. 1918;1(1). (In Russ.).
  34. Lobyrev F., Hoffman M. J. A morphological and geometric method for estimating the selectivity of gill nets. Reviews in Fish Biology and Fisheries. 2018;28:909–924. doi: 10.1007/s11160-018-9534-1.
  35. Lobyrev F., Hoffman M. J. A method for estimating fish density through the catches of gill nets. Fisheries Management and Ecology. 2022;30:24–36. doi: 10.1111/feme.12597.
  36. Osinov A. G., Volkov A. A., Pavlov D. A. Secondary contact, hybridization, and diversification in Arctic charr (Salvelinus alpinus (L.) species complex) from lakes of the Norilo-Pyasinskaya water system, Taimyr: how many forms exist there? Hydrobiologia. 2022;849:2521–2547. doi: 10.1007/s10750-022-04869-x.
  37. Christiansen J. S., Jorgensen E. H., Jobling M. Oxygen consumption in relation to sustained exercise and social stress in Arctic charr Salvelinus alpinus (L.). Journal of Experimental Zoology. 1991;260:149–156. doi: 10.1002/jez.140260020.
  38. Marchand F., Magnan P., Boisclair D. Water temperature, light intensity and zooplankton density and the feeding activity of juvenile brook charr (Salvelinus fontinalis). Freshwater Biology. 2002;74:2153–2162. doi: 10.1046/j.1365-2427.2002.00961.x.
  39. Courtney M. B., Scanlo B. S., Rikardsen A. H., Seitz A. C. Marine behavior and dispersal of an important subsistence fish in Arctic Alaska, the Dolly Varden. Environmental Biology of Fishes. 2016;99:209–222. doi: 10.1007/s10641–015–0468–3.
  40. Ware D. M. Bioenergetics of pelagic fish: Theoretical change in swimming speed and ration with body size. Journal of the Fisheries Research Board of Canada. 1978;35:220–228. doi: 10.1139/f78–036.
  41. Kasumyan A. O., Pavlov D. S. Stajnoe povedenie ryb = [Schooling behavior in fish]. Moscow: KMC Scientific Publishers Association; 2018. 274 с. (In Russ.).
  42. Cui G., Wardle C. S., Glass C. W., Johnstone A. D.F., Mojsiewicz W. R. Light level thresholds for visual reaction of mackerel, Scomber scombrus L., to coloured monofilament nylon gill net materials. Fisheries Research. 1991;10:255–263. doi: 10.1016/0165–7836(91)90079-u.
  43. Wardle C. S., Cui G., Mojsiewicz W. R., Glass C. W. The effect of colour on the appearance of monofilament nylon underwater. Fisheries Research. 1991;10:243–253. doi: 10.1016/0165-7836(91)90078 -t.
  44. Lobyrev F. S., Pivovarov E. A., Khokhryakov V. R., Pavlov S. D. Populyacionnye harakteristiki plotvy, gustery i okunya v oz. Ozeryavki (nacional’nyj park «Sebezhskij») = [Population parameters of roach, white bream and perch in the lake Ozeryavki (Sebezhsky national park)]. Trudy VNIRO. 2023;191:37–52. (In Russ.). doi: 10.36038/2307-3497-2023-191-37-52.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Different stages of fish interaction with the gillnet. NTotal is the total number of fish that touched the net, NW is the number of fish that swam, NT is the number of fish that became entangled. Probabilities: P(O|C) - fish entering the mesh when touched, P(Th|C) - mouth on the thread when touched, P(E|O) - entering the mesh, P(W|E) - retention in the net through declawing, P(T|Th) - retention in the net through entanglement. The vertical dash denotes conditional probability

Download (128KB)
3. Fig. 2. Schematic of the gillnet trapping zone; each point in the upper quarter of the zone is a node for which the probability is calculated according to formula (13), L is the length of the net

Download (70KB)
4. Fig. 3. Nomogram for estimating the probability P(AF) of fish approaching the net for different values of ρ and L

Download (460KB)
5. Fig. 4. Map-scheme of the study area; the numbers indicate the locations of catching on Lama and Kapchuk lakes

Download (212KB)

Copyright (c) 2024 Russian Academy of Sciences